1064 Complete Binary Search Tree (30 分)
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
- The left subtree of a node contains only nodes with keys less than the node’s key.
- The right subtree of a node contains only nodes with keys greater than or equal to the node’s key.
- Both the left and right subtrees must also be binary search trees.
A Complete Binary Tree (CBT) is a tree that is completely filled, with the possible exception of the bottom level, which is filled from left to right.
Now given a sequence of distinct non-negative integer keys, a unique BST can be constructed if it is required that the tree must also be a CBT. You are supposed to output the level order traversal sequence of this BST.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer NNN (≤1000\le 1000≤1000). Then NNN distinct non-negative integer keys are given in the next line. All the numbers in a line are separated by a space and are no greater than 2000.
Output Specification:
For each test case, print in one line the level order traversal sequence of the corresponding complete binary search tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.
Sample Input:
10
1 2 3 4 5 6 7 8 9 0
Sample Output:
6 3 8 1 5 7 9 0 2 4
思路:
由于要输出的是一个完全二叉树且是二叉搜索树。所以使用顺序表存储,对各个顶点的编号方法是自左到右,自上而下。所以
只需要在建立树以后,遍历数组输出即可,当然使用标准的二叉树层次遍历算法也可以。建立树的方法使用中序遍历,因为二叉搜
索树的中序遍历结果是有序的。
#include<iostream> #include<vector> #include<algorithm> #include<queue> #include<string> #include<map> #include<set> using namespace std; int k=1; void create(int tree[],int root,int n,int a[]) { if(root>n) return; create(tree,2*root,n,a); tree[root]=a[k++]; create(tree,2*root+1,n,a); } void level(int tree[],int n) { queue<int> qu; qu.push(1); cout<<tree[1]; while(!qu.empty()) { int temp=qu.front(); qu.pop(); if(2*temp<=n) { qu.push(2*temp); cout<<" "<<tree[2*temp]; } if(2*temp+1<=n) { qu.push(2*temp+1); cout<<" "<<tree[2*temp+1]; } } } int main() { int n; cin>>n; int a[n+1]; for(int i=1;i<n+1;i++) cin>>a[i]; sort(a+1,a+n+1); int tree[n+1]; create(tree,1,n,a); //level(tree,n); cout<<tree[1]; for(int i=2;i<n+1;i++) cout<<" "<<tree[i]; return 0; }