Given a string S and a string T, count the number of distinct subsequences of T in S.
A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, “ACE”
is a subsequence of “ABCDE”
while “AEC”
is not).
Here is an example:S = “rabbbit”
, T = “rabbit”
Return 3.
Subscribe to see which companies asked this question.
题目
给出字符串S和字符串T,计算S的不同的子序列中T出现的个数。
子序列字符串是原始字符串通过删除一些(或零个)产生的一个新的字符串,并且对剩下的字符的相对位置没有影响。(比如,“ACE”是“ABCDE”的子序列字符串,而“AEC”不是)。
样例
给出S = “rabbbit”, T = “rabbit”
返回 3
分析
利用动态规划去做,我们用dp[i][j]表示S与T的前i个字符与前j个字符的匹配子串个数。可以知道:
1)初始条件:T为空字符串时,S为任意字符串都能匹配一次,所以dp[i][0]=1;S为空字符串,T不为空时,不能匹配,所以dp[0]1″ target=”_blank”>j=0。
2)若S的第i个字符等于T的第j个字符时,我们有两种匹配的选择:其一,若S的i-1字符匹配T的j-1字符,我们可以选择S的i字符与T的j字符匹配;其二,若S的i-1字符子串已经能与T的j字符匹配,放弃S的i字符与T的j字符。因此这个情况下,dp[i][j]=dp[i-1][j-1]+dp[i-1][j]。
3)若S的第i个字符不等于T的第j个字符时,这时只有当S的i-1字符子串已经能与T的j字符匹配,该子串能够匹配。因此这个情况下,dp[i][j]=dp[i-1][j]。
代码
public class Solution {
/**
* @param S, T: Two string.
* @return: Count the number of distinct subsequences
*/
public int numDistinct(String S, String T) {
// write your code here
if (S == null || T == null) {
return 0;
}
int[][] nums = new int[S.length() + 1][T.length() + 1];
for (int i = 0; i <= S.length(); i++) {
nums[i][0] = 1;
}
for (int i = 1; i <= S.length(); i++) {
for (int j = 1; j <= T.length(); j++) {
nums[i][j] = nums[i-1][j];
if (S.charAt(i - 1) == T.charAt(j - 1)) {
nums[i][j] += nums[i - 1][j - 1];
}
}
}
return nums[S.length()][T.length()];
}
}