一、介绍
1.什么是索引?
一般的应用系统,读写比例在10:1左右,而且插入操作和一般的更新操作很少出现性能问题,在生产环境中,我们遇到最多的,也是最容易出问题的,还是一些复杂的查询操作,因此对查询语句的优化显然是重中之重。说起加速查询,就不得不提到索引了。
2.为什么要有索引呢?
索引在MySQL中也叫做“键”,是存储引擎用于快速找到记录的一种数据结构。索引对于良好的性能
非常关键,尤其是当表中的数据量越来越大时,索引对于性能的影响愈发重要。
索引优化应该是对查询性能优化最有效的手段了。索引能够轻易将查询性能提高好几个数量级。
索引相当于字典的音序表,如果要查某个字,如果不使用音序表,则需要从几百页中逐页去查。
二、索引的原理
一 、索引原理
索引的目的在于提高查询效率,与我们查阅图书所用的目录是一个道理:先定位到章,然后定位到该章下的一个小节,然后找到页数。相似的例子还有:查字典,查火车车次,飞机航班等
本质都是:通过不断地缩小想要获取数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的事件,也就是说,有了这种索引机制,我们可以总是用同一种查找方式来锁定数据。
数据库也是一样,但显然要复杂的多,因为不仅面临着等值查询,还有范围查询(>、<、between、in)、模糊查询(like)、并集查询(or)等等。数据库应该选择怎么样的方式来应对所有的问题呢?我们回想字典的例子,能不能把数据分成段,然后分段查询呢?最简单的如果1000条数据,1到100分成第一段,101到200分成第二段,201到300分成第三段……这样查第250条数据,只要找第三段就可以了,一下子去除了90%的无效数据。但如果是1千万的记录呢,分成几段比较好?稍有算法基础的同学会想到搜索树,其平均复杂度是lgN,具有不错的查询性能。但这里我们忽略了一个关键的问题,复杂度模型是基于每次相同的操作成本来考虑的。而数据库实现比较复杂,一方面数据是保存在磁盘上的,另外一方面为了提高性能,每次又可以把部分数据读入内存来计算,因为我们知道访问磁盘的成本大概是访问内存的十万倍左右,所以简单的搜索树难以满足复杂的应用场景。
二、 磁盘IO与预读
考虑到磁盘IO是非常高昂的操作,计算机操作系统做了一些优化,当一次IO时,不光把当前磁盘地址的数据,而是把相邻的数据也都读取到内存缓冲区内,因为局部预读性原理告诉我们,当计算机访问一个地址的数据的时候,与其相邻的数据也会很快被访问到。每一次IO读取的数据我们称之为一页(page)。具体一页有多大数据跟操作系统有关,一般为4k或8k,也就是我们读取一页内的数据时候,实际上才发生了一次IO,这个理论对于索引的数据结构设计非常有帮助。
三、Mysql索引
3.1功能
- 索引的功能就是加速查找
- mysql中的primary key,unique,联合唯一也都是索引,这些索引除了加速查找以外,还有约束的功能
3.2MySQL的索引分类
- 主键索引:即主索引,根据主键pk_clolum(length)建立索引,不允许重复,不允许空值;
- 唯一索引:用来建立索引的列的值必须是唯一的,允许空值
- 普通索引:用表中的普通列构建的索引,没有任何限制
- 全文索引:用大文本对象的列构建的索引(下一部分会讲解)
- 组合索引:用多个列组合构建的索引,这多个列中的值不允许有空值
3.3索引的两大类型hash与btree
我们可以在创建上述索引的时候,为其指定索引类型,分两类 1.hash类型的索引:查询单条快,范围查询慢 2.btree类型的索引:b+树,层数越多,数据量指数级增长(我们就用它,因为innodb默认支持它) 不同的存储引擎支持的索引类型也不一样 InnoDB 支持事务,支持行级别锁定,支持 B-tree、Full-text 等索引,不支持 Hash 索引; MyISAM 不支持事务,支持表级别锁定,支持 B-tree、Full-text 等索引,不支持 Hash 索引; Memory 不支持事务,支持表级别锁定,支持 B-tree、Hash 等索引,不支持 Full-text 索引; NDB 支持事务,支持行级别锁定,支持 Hash 索引,不支持 B-tree、Full-text 等索引; Archive 不支持事务,支持表级别锁定,不支持 B-tree、Hash、Full-text 等索引;
3.4创建/删除索引的语法
#方法一:创建表时
CREATE TABLE 表名 (
字段名1 数据类型 [完整性约束条件…],
字段名2 数据类型 [完整性约束条件…],
[UNIQUE | FULLTEXT | SPATIAL ] INDEX | KEY
[索引名] (字段名[(长度)] [ASC |DESC])
);
#方法二:CREATE在已存在的表上创建索引
CREATE [UNIQUE | FULLTEXT | SPATIAL ] INDEX 索引名
ON 表名 (字段名[(长度)] [ASC |DESC]) ;
#方法三:ALTER TABLE在已存在的表上创建索引
ALTER TABLE 表名 ADD [UNIQUE | FULLTEXT | SPATIAL ] INDEX
索引名 (字段名[(长度)] [ASC |DESC]) ;
#删除索引:DROP INDEX 索引名 ON 表名字;
创建/删除索引的语法
具体代码
1.创建索引
-在创建表时就创建(需要注意的几点)
create table s1(
id int ,#可以在这加primary key
#id int index #不可以这样加索引,因为index只是索引,没有约束一说,
#不能像主键,还有唯一约束一样,在定义字段的时候加索引
name char(20),
age int,
email varchar(30)
#primary key(id) #也可以在这加
index(id) #可以这样加
);
-在创建表后在创建
create index name on s1(name); #添加普通索引
create unique age on s1(age);添加唯一索引
alter table s1 add primary key(id); #添加住建索引,也就是给id字段增加一个主键约束
create index name on s1(id,name); #添加普通联合索引
2.删除索引
drop index id on s1;
drop index name on s1; #删除普通索引
drop index age on s1; #删除唯一索引,就和普通索引一样,不用在index前加unique来删,直接就可以删了
alter table s1 drop primary key; #删除主键(因为它添加的时候是按照alter来增加的,那么我们也用alter来删)
四、索引的使用策略、
什么时候要使用索引?
- 主键自动建立唯一索引;
- 经常作为查询条件在WHERE或者ORDER BY 语句中出现的列要建立索引;
- 作为排序的列要建立索引;
- 查询中与其他表关联的字段,外键关系建立索引
- 高并发条件下倾向组合索引
什么时候不要使用索引?
- 经常增删改的列不要建立索引;
- 有大量重复的列不建立索引;
- 表记录太少不要建立索引;
使用索引注意事项
*在组合索引中不能有列的值为NULL,如果有,那么这一列对组合索引就是无效的;
*在一个SELECT语句中,索引只能使用一次,如果在WHERE中使用了,那么在ORDER BY中就不要用了;
*LIKE操作中,’%aaa%’不会使用索引,也就是索引会失效,但是‘aaa%’可以使用索引;
*在索引的列上使用表达式或者函数会使索引失效,例如:select * from users where YEAR(adddate)<2007,将在每个行上进行运算,这将导致索引失效而进行全表扫描,因此我们可以改成:select * from users where adddate<’2007-01-01′。
*在查询条件中使用正则表达式时,只有在搜索模板的第一个字符不是通配符的情况下才能使用索引。
*在查询条件中使用<>会导致索引失效。
*在查询条件中使用IS NULL会导致索引失效。
*在查询条件中使用OR连接多个条件会导致索引失效,这时应该改为两次查询,然后用UNION ALL连接起来。
*尽量不要包括多列排序,如果一定要,最好为这队列构建组合索引;
*只有当数据库里已经有了足够多的测试数据时,它的性能测试结果才有实际参考价值。如果在测试数据库里只有几百条数据记录,它们往往在执行完第一条查询命令之后就被全部加载到内存里,这将使后续的查询命令都执行得非常快–不管有没有使用索引。只有当数据库里的记录超过了1000条、数据总量也超过了MySQL服务器上的内存总量时,数据库的性能测试结果才有意义。
五、索引的优化
1、最左前缀
索引的最左前缀和和B+Tree中的“最左前缀原理”有关,举例来说就是如果设置了组合索引<col1,col2,col3>那么以下3中情况可以使用索引:col1,<col1,col2>,<col1,col2,col3>,其它的列,比如<col2,col3>,<col1,col3>,col2,col3等等都是不能使用索引的。
根据最左前缀原则,我们一般把排序分组频率最高的列放在最左边,以此类推。
2、带索引的模糊查询优化
在上面已经提到,使用LIKE进行模糊查询的时候,’%aaa%’不会使用索引,也就是索引会失效。如果是这种情况,只能使用全文索引来进行优化(上文有讲到)。
为检索的条件构建全文索引,然后使用
SELECT * FROM tablename MATCH(index_colum) ANGAINST(‘word’);