几种大数阶乘算法效率比较(Java)

完整代码:

package bigdatamul;

import java.math.BigInteger;
/** * 大数阶乘 * * @Description: TODO(大数阶乘) * * @author yzy * @date 2016-12-20 上午9:31:14 * */
public class Test {

    public static void main(String[] args) {
        //单位:ms
        //fun1(5000);//100!:2 1000!:15 5000!:78 10000!:234 50000!:5879
        fun2(5000);//100!:16 1000!:114 5000!:519 10000!:911 50000!:4340
        //fun3(50000);//100!:0 1000!:15 5000!:62 10000!:312 50000!:8955
    }

    public static void fun1(Integer n) {
        Long begin = System.currentTimeMillis();
         Integer base = n;   
         BigInteger result = new BigInteger("1");   
         for(int i = 1; i <= base; i++){   
                 String temp1 = Integer.toString(i);   
                 BigInteger temp2 = new  BigInteger(temp1);   
                 result = result.multiply(temp2);   
         }   
         System.out.println("" + base + "! = " + result);   
         Long end = System.currentTimeMillis();
         System.out.println("运行时间:"+(end - begin));
    }

    public static void fun2(int n) {
        Long begin = System.currentTimeMillis();
         int[] cal = new int[10010];  
            int num = n;  
            cal[0] = 1;  
            for(int index = 1; index <= num; ++index )  
            {  
                for(int i = 0; i < 10000; i++)  
                {  
                    cal[i] = cal[i]*index;  

                }  
                for(int i = 0; i < 10000; i++)  
                {  
                    cal[i+4] = cal[i+4]+ cal[i]/10000;  
                    cal[i+3] = cal[i+3]+ cal[i]%10000/1000;  
                    cal[i+2] = cal[i+2]+ cal[i]%1000/100;  
                    cal[i+1] = cal[i+1]+ cal[i]%100/10;  
                    cal[i+0] = cal[i]%10;  
                }  
            }  
            for(int i3 = 0; i3 < 10004; i3++)  
            {  
                cal[i3+4] = cal[i3+4]+ cal[i3]/10000;  
                cal[i3+3] = cal[i3+3]+ cal[i3]%10000/1000;  
                cal[i3+2] = cal[i3+2]+ cal[i3]%1000/100;  
                cal[i3+1] = cal[i3+1]+ cal[i3]%100/10;  
                cal[i3+0] = cal[i3]%10;  
            }  
            int x = 10000;  
            while(cal[x] == 0)  
                x--;  
            for(int i2 = x; i2 >= 0; i2--)  
            {  
                System.out.print(cal[i2]);  
            }  
            System.out.println();  
            Long end = System.currentTimeMillis();
            System.out.println("运行时间:"+(end - begin));
    }

    public static void fun3(int n) {
        Long begin = System.currentTimeMillis();
        int RAD=10000;  
        int buffSize=(int)(n * Math.log10((n+1)/2) / Math.log10(RAD)+1);  
        short[] buff = new short[buffSize];  
        int len=1;  
        buff[0]=1;  
        for (int i=1;i<=n;i++){  
            int c=0;  
            for (int j=0;j<len;j++)  
            {  
                int prod=(buff[j]*i+c);  
                buff[j]=(short)(prod % RAD);  
                c=prod / RAD;  
            }  
            while (c>0)  
            {  
                buff[len++]= (short)(c % RAD);  
                c=c/RAD;  
            }  
        }
        Long end = System.currentTimeMillis();
        System.out.println("运行时间:"+(end - begin));
    }

}

总结:由运行结果可以看出,在计算10000以下的阶乘时,算法一和算法三效率相当,算法二较慢;而数字很大时,算法二效率反而快些,算法一、三效率反而不行。

    原文作者:大整数乘法问题
    原文地址: https://blog.csdn.net/rickiyeat/article/details/53759560
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞