pandas某一列中每一行拆分成多行的方法

在处理数据过程中,常会遇到将一条数据拆分成多条,比如一个人的地址信息中,可能有多条地址,既有家庭地址也有工作地址,还有电话信息等等类似的情况,实际使用数据的时候又需要分开处理,这个时候就需要将这一条数据进行拆分成多条,以方便使用。
在pandas中如何对DataFrame进行相关操作呢,经查阅相关资料,发现了一个简单的办法,

info.drop(['city'], axis=1).join(info['city'].str.split(' ', expand=True).stack().reset_index(level=1, drop=True).rename('city'))

看起来非常之长,分开来看,流程如下:

  • 将需要拆分的数据使用split拆分工具拆分,并使用expand功能拆分成多列
  • 将拆分后的多列数据进行列转行操作(stack),合并成一列
  • 将生成的复合索引重新进行reset保留原始的索引,并命名
  • 将上面处理后的DataFrame和原始DataFrame进行join操作,默认使用的是索引进行连接

具体操作如下:

预操作:生成需要使用的DataFrame

# 用来生成DataFrame的工具
from pydbgen import pydbgen
myDB=pydbgen.pydb()

# 生成一个DataFrame
info = myDB.gen_dataframe(10,['name','phone','city','state'])

结果如下:

namephone-numbercitystate
0Hannah Richard810-859-7815IrwinvilleLouisiana
1Ronald Berry591-564-0585Glen EllenMinnesota
2Caitlin Barron969-840-8580DuboisOklahoma
3Felicia Stephens154-858-1233VeedersburgAlaska
4Shelly Dennis343-104-9365MattapexVirginia
5Nicholas Hill992-239-1954MonetaMinnesota
6Steve Bradshaw164-081-7811Ten BroeckColorado
7Gail Johnston155-259-9514WayanVirginia
8John Gray409-892-4716DarlingtonPennsylvania
9Katherine Bautista185-861-1677McNabTexas

假如现在我们要对city列进行进行拆分,按照空格拆分,转换成多行的数据,
第一步:拆分,生成多列

info_city = info['city'].str.split(' ', expand=True)

结果如下:

01
0IrwinvilleNone
1GlenEllen
2DuboisNone
3VeedersburgNone
4MattapexNone
5MonetaNone
6TenBroeck
7WayanNone
8DarlingtonNone
9McNabNone

可以看到已经将原始数据拆分成了2列,对于无法拆分的数据为None

第二步:行转列

info_city = info_city.stack()

结果如下:

00Irwinville
10Glen
1Ellen
20Dubois
30Veedersburg
40Mattapex
50Moneta
60Ten
1Broeck
70Wayan
80Darlington
90McNab

其中前面两列是索引,返回的是一个series,没有名字的series

第三步:重置索引,并命名(并删除多于的索引)

info_city = info_city.reset_index(level=1, drop=True)

结果如下:

0Irwinville
1Glen
1Ellen
2Dubois
3Veedersburg
4Mattapex
5Moneta
6Ten
6Broeck
7Wayan
8Darlington
9McNab

第四步:和原始数据合并

info_new = info.drop(['city'], axis=1).join(info_city)

结果如下:

namephone-numberstatecity
0Hannah Richard810-859-7815LouisianaIrwinville
1Ronald Berry591-564-0585MinnesotaGlen
1Ronald Berry591-564-0585MinnesotaEllen
2Caitlin Barron969-840-8580OklahomaDubois
3Felicia Stephens154-858-1233AlaskaVeedersburg
4Shelly Dennis343-104-9365VirginiaMattapex
5Nicholas Hill992-239-1954MinnesotaMoneta
6Steve Bradshaw164-081-7811ColoradoTen
6Steve Bradshaw164-081-7811ColoradoBroeck
7Gail Johnston155-259-9514VirginiaWayan
8John Gray409-892-4716PennsylvaniaDarlington
9Katherine Bautista185-861-1677TexasMcNab

需要特别注意的是,需要使用原始的连接新生成的,因为新生成的是一个series没有join方法,也可以通过将生成的series通过to_frame方法转换成DataFrame,这样就没有什么差异了

写了这么多,记住下面的就行了:
info.drop([‘city’], axis=1).join(info[‘city’].str.split(’ ‘, expand=True).stack().reset_index(level=1, drop=True).rename(‘city’))

如果原数据中已经是list了,可以将info[‘city’].str.split(’ ‘, expand=True)这部分替换成info[‘city’].apply(lambda x: pd.Series(x)),就可以达到相同的目的。

    原文作者:dongcheng_
    原文地址: https://blog.csdn.net/dongcheng_/article/details/84624789
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞