[LeetCode] Prefix and Suffix Search 前后缀搜索

 

Given many words, words[i] has weight i.

Design a class WordFilter that supports one function, WordFilter.f(String prefix, String suffix). It will return the word with given prefix and suffix with maximum weight. If no word exists, return -1.

Examples:

Input:
WordFilter(["apple"])
WordFilter.f("a", "e") // returns 0
WordFilter.f("b", "") // returns -1

Note:

    1. words has length in range [1, 15000].
    2. For each test case, up to words.length queries WordFilter.f may be made.
    3. words[i] has length in range [1, 10].
    4. prefix, suffix have lengths in range [0, 10].
    5. words[i] and prefix, suffix queries consist of lowercase letters only.

 

这道题给了我们一些单词,让我们通过输入单词的前缀和后缀来查找单词的位置。单词的位置就是其权重值,如果给定的前后缀能对应到不只一个单词,那么返回最大的权重。首先,一个单词如果长度为n的话,那么其就有n个前缀,比如对于单词apple,其前缀即为”a”, “ap”, “app”, “appl”, “apple”,同理,后缀也有n个。那么其组成的情况就有n2个,所以最简单的方法就是把这n2个前后缀组成一个字符串,和当前权重建立映射。如果后面的单词有相同的前后缀,直接用后面的大权重来覆盖之前的权重即可。为了将前后缀encode成一个字符串,我们可以在中间加上一个非字母字符,比如’#’,然后在查找的时候,我们先拼出“前缀#后缀”字符串,直接去哈希map中找即可,这种解法的WordFilter函数时间复杂度为O(NL^2),其中N是单词个数,L是单词长度。f函数时间复杂度为O(1),空间复杂度为O(NL^2),适合需要大量查找的情况下使用,参见代码如下:

 

class WordFilter {
public:
    WordFilter(vector<string> words) {
        for (int k = 0; k < words.size(); ++k) {
            for (int i = 0; i <= words[k].size(); ++i) {
                for (int j = 0; j <= words[k].size(); ++j) {
                    m[words[k].substr(0, i) + "#" + words[k].substr(words[k].size() - j)] = k;
                }
            }
        }
    }

    int f(string prefix, string suffix) {
        return (m.count(prefix + "#" + suffix)) ? m[prefix + "#" + suffix] : -1;
    }

private:
    unordered_map<string, int> m;
};

 

如果我们希望节省一些空间的话,可以使用下面的方法。使用两个哈希map,一个建立所有前缀和权重数组之间的映射,另一个建立所有后缀和权重数组之间的映射。在WordFilter函数中,我们遍历每个单词,然后先遍历其所有前缀,将遍历到的前缀的映射数组中加入当前权重,同理再遍历其所有后缀,将遍历到的后缀的映射数组中加入当前权重。在搜索函数f中,首先判断,如果前缀或后缀不存在的话,直接返回-1。否则我们分别把前缀和后缀的权重数组取出来,然后用两个指针i和j,分别指向数组的最后一个位置。当i和j不小于0时进行循环,如果两者的权重相等,直接返回,如果前缀的权重数组值大,则j自减1,反之i自减1,这种解法的WordFilter函数时间复杂度为O(NL),其中N是单词个数,L是单词长度。f函数时间复杂度为O(N),空间复杂度为O(NL),参见代码如下:

 

解法二:

class WordFilter {
public:
    WordFilter(vector<string> words) {
        for (int k = 0; k < words.size(); ++k) {
            for (int i = 0; i <= words[k].size(); ++i) {
                mp[words[k].substr(0, i)].push_back(k);
            }
            for (int i = 0; i <= words[k].size(); ++i) {
                ms[words[k].substr(words[k].size() - i)].push_back(k);
            }
        }
    }

    int f(string prefix, string suffix) {
        if (!mp.count(prefix) || !ms.count(suffix)) return -1;
        vector<int> pre = mp[prefix], suf = ms[suffix];
        int i = pre.size() - 1, j = suf.size() - 1;
        while (i >= 0 && j >= 0) {
            if (pre[i] < suf[j]) --j;
            else if (pre[i] > suf[j]) --i;
            else return pre[i];
        }
        return -1;
    }

private:
    unordered_map<string, vector<int>> mp, ms;
};

 

moto72大神的帖子中还有第三种解法,但是C++中没有startsWith()和endsWith()函数,以至于无法写出C++版本的,还是Java比较叼啊。

 

类似题目:

Add and Search Word – Data structure design

 

参考资料:

https://discuss.leetcode.com/topic/113547/three-ways-to-solve-this-problem-in-java

 

    原文作者:Grandyang
    原文地址: http://www.cnblogs.com/grandyang/p/8331660.html
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞