样本均值和方差对总体均值和方差的无偏估计证明、样本方差的方差

样本均值和样本方差

  首先对于样本$x_1…x_n$来说,他们的均值为与方差分别为:

  $\bar{x} = \frac{1}{n}\sum\limits_{i=1}^{n}x_i$

  $s^2 = \frac{\sum\limits_{i=1}^{n} (x_i – \bar{x})^2}{n-1}$

  要证明样本方差的无偏性,首先要计算样本均值的方差。 

样本均值的方差

  $D(\bar{x}) = D(\frac{\sum\limits_{i=1}^{n}x_i}{n}) = \frac{1}{n^2}\sum\limits_{i=1}^{n}D(x_i) = \frac{1}{n^2}\sum\limits_{i=1}^{n}\sigma^2 = \frac{\sigma^2}{n}$

样本均值和样本方差的无偏性证明

  $E(\bar{x}) = E(\frac{1}{n}\sum\limits_{i=1}^{n}x_i) = \frac{1}{n}\sum\limits_{i=1}^{n}E(x_i) = \frac{1}{n}\sum\limits_{i=1}^{n}\mu = \mu$

  $E(s^2)$

  $= E(\frac{\sum\limits_{i=1}^{n} (x_i – \bar{x})^2}{n-1})$

  $= \frac{1}{n-1}\sum\limits_{i=1}^{n}E(x_i^2 + \bar{x}^2 – 2x_i\bar{x}) $

  $= \frac{1}{n-1}\sum\limits_{i=1}^{n}[D(x) + E(x)^2 + D(\bar{x}) + E(\bar{x})^2 – 2E((x_i^2 + x_ix_1 + … + x_ix_{i-1} + x_ix_{i+1} + … + x_ix_n)/n)]$

  $\xlongequal[]{E(x_ix_j) = E(x_i)E(x_j)} \frac{1}{n-1}\sum\limits_{i=1}^{n}[\sigma^2 + \mu^2 + \sigma^2/n + \mu^2 – 2(\sigma^2 + \mu^2 + (n-1)\mu^2)/n]$

  $=  \frac{1}{n-1}\sum\limits_{i=1}^{n}(\frac{n – 1}{n}\sigma^2)$

  $= \sigma^2$

样本方差的方差

  如果总体$X \sim N(\mu, \sigma^2)$,那它的样本方差有:

  $\frac{(n-1)s^2}{\sigma^2} \sim \chi^2(n – 1)$.

  由于$\chi^2$分布的方差为两倍的自由度,得:

  $D(\frac{(n-1)s^2}{\sigma^2}) = 2(n – 1)$

  $D(s^2) = \frac{2\sigma^4}{n – 1}$

    原文作者:cnblogs.com/qizhou/
    原文地址: https://blog.csdn.net/qq_37189298/article/details/104164726
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞