Given two non-empty binary trees s and t, check whether tree t has exactly the same structure and node values with a subtree of s. A subtree of s is a tree consists of a node in s and all of this node’s descendants. The tree scould also be considered as a subtree of itself.
Example 1:
Given tree s:
3 / \ 4 5 / \ 1 2
Given tree t:
4 / \ 1 2
Return true, because t has the same structure and node values with a subtree of s.
Example 2:
Given tree s:
3 / \ 4 5 / \ 1 2 / 0
Given tree t:
4 / \ 1 2
Return false.
这道题让我们求一个数是否是另一个树的子树,从题目中的第二个例子中可以看出,子树必须是从叶结点开始的,中间某个部分的不能算是子树,那么我们转换一下思路,是不是从s的某个结点开始,跟t的所有结构都一样,那么问题就转换成了判断两棵树是否相同,也就是Same Tree的问题了,这点想通了其实代码就很好写了,用递归来写十分的简洁,我们先从s的根结点开始,跟t比较,如果两棵树完全相同,那么返回true,否则就分别对s的左子结点和右子结点调用递归再次来判断是否相同,只要有一个返回true了,就表示可以找得到。
解法一:
class Solution { public: bool isSubtree(TreeNode* s, TreeNode* t) { if (!s) return false; if (isSame(s, t)) return true; return isSubtree(s->left, t) || isSubtree(s->right, t); } bool isSame(TreeNode* s, TreeNode* t) { if (!s && !t) return true; if (!s || !t) return false; if (s->val != t->val) return false; return isSame(s->left, t->left) && isSame(s->right, t->right); } };
下面这道题的解法用到了之前那道Serialize and Deserialize Binary Tree的解法,思路是对s和t两棵树分别进行序列化,各生成一个字符串,如果t的字符串是s的子串的话,就说明t是s的子树,但是需要注意的是,为了避免出现[12], [2], 这种情况,虽然2也是12的子串,但是[2]却不是[12]的子树,所以我们再序列化的时候要特殊处理一下,就是在每个结点值前面都加上一个字符,比如’,’,来分隔开,那么[12]序列化后就是”,12,#”,而[2]序列化之后就是”,2,#”,这样就可以完美的解决之前的问题了,参见代码如下:
解法二:
class Solution { public: bool isSubtree(TreeNode* s, TreeNode* t) { ostringstream os1, os2; serialize(s, os1); serialize(t, os2); return os1.str().find(os2.str()) != string::npos; } void serialize(TreeNode* node, ostringstream& os) { if (!node) os << ",#"; else { os << "," << node->val; serialize(node->left, os); serialize(node->right, os); } } };
类似题目:
Serialize and Deserialize Binary Tree
参考资料:
https://discuss.leetcode.com/topic/88508/java-solution-tree-traversal
https://discuss.leetcode.com/topic/88491/java-concise-o-n-m-time-o-n-m-space
https://discuss.leetcode.com/topic/88700/easy-o-n-java-solution-using-inorder-and-preorder-traversal