Given two sparse matrices A and B, return the result of AB.
You may assume that A‘s column number is equal to B‘s row number.
Example:
A = [ [ 1, 0, 0], [-1, 0, 3] ] B = [ [ 7, 0, 0 ], [ 0, 0, 0 ], [ 0, 0, 1 ] ] | 1 0 0 | | 7 0 0 | | 7 0 0 | AB = | -1 0 3 | x | 0 0 0 | = | -7 0 3 | | 0 0 1 |
这道题让我们实现稀疏矩阵相乘,稀疏矩阵的特点是矩阵中绝大多数的元素为0,而相乘的结果是还应该是稀疏矩阵,即还是大多数元素为0,那么我们使用传统的矩阵相乘的算法肯定会处理大量的0乘0的无用功,所以我们需要适当的优化算法,使其可以顺利通过OJ,我们知道一个 i x k 的矩阵A乘以一个 k x j 的矩阵B会得到一个 i x j 大小的矩阵C,那么我们来看结果矩阵中的某个元素C[i][j]是怎么来的,起始是A[i][0]*B[0][j] + A[i][1]*B[1][j] + … + A[i][k]*B[k][j],那么为了不重复计算0乘0,我们首先遍历A数组,要确保A[i][k]不为0,才继续计算,然后我们遍历B矩阵的第k行,如果B[K][J]不为0,我们累加结果矩阵res[i][j] += A[i][k] * B[k][j]; 这样我们就能高效的算出稀疏矩阵的乘法,参见代码如下:
解法一:
class Solution { public: vector<vector<int>> multiply(vector<vector<int>>& A, vector<vector<int>>& B) { vector<vector<int>> res(A.size(), vector<int>(B[0].size())); for (int i = 0; i < A.size(); ++i) { for (int k = 0; k < A[0].size(); ++k) { if (A[i][k] != 0) { for (int j = 0; j < B[0].size(); ++j) { if (B[k][j] != 0) res[i][j] += A[i][k] * B[k][j]; } } } } return res; } };
再来看另一种方法,这种方法其实核心思想跟上面那种方法相同,稍有不同的是我们用一个二维矩阵矩阵来记录每一行中,各个位置中不为0的列数和其对应的值,然后我们遍历这个二维矩阵,取出每行中不为零的列数和值,然后遍历B中对应行进行累加相乘,参见代码如下:
解法二:
class Solution { public: vector<vector<int>> multiply(vector<vector<int>>& A, vector<vector<int>>& B) { vector<vector<int>> res(A.size(), vector<int>(B[0].size())); vector<vector<pair<int, int>>> v(A.size(), vector<pair<int,int>>()); for (int i = 0; i < A.size(); ++i) { for (int k = 0; k < A[i].size(); ++k) { if (A[i][k] != 0) v[i].push_back({k, A[i][k]}); } } for (int i = 0; i < A.size(); ++i) { for (int k = 0; k < v[i].size(); ++k) { int col = v[i][k].first; int val = v[i][k].second; for (int j = 0; j < B[0].size(); ++j) { res[i][j] += val * B[col][j]; } } } return res; } };
参考资料:
https://leetcode.com/discuss/77235/ac-soluiton-code
https://leetcode.com/discuss/71912/easiest-java-solution