Given a string that contains only digits 0-9
and a target value, return all possibilities to add operators +
, -
, or *
between the digits so they evaluate to the target value.
Examples:
"123", 6 -> ["1+2+3", "1*2*3"] "232", 8 -> ["2*3+2", "2+3*2"] "00", 0 -> ["0+0", "0-0", "0*0"] "3456237490", 9191 -> []
Credits:
Special thanks to @davidtan1890 for adding this problem and creating all test cases.
这道题给了我们一个只由数字组成的字符串,让我们再其中添加+,-或*号来形成一个表达式,该表达式的计算和为给定了target值,让我们找出所有符合要求的表达式来。题目中给的几个例子其实并不好,很容易让人误以为是必须拆成个位数字,其实不是的,比如”123″, 15能返回”12+3″,说明连着的数字也可以。如果非要在过往的题中找一道相似的题,我觉得跟Combination Sum II 组合之和之二很类似。不过这道题要更复杂麻烦一些。还是用递归来解题,我们需要两个变量diff和curNum,一个用来记录将要变化的值,另一个是当前运算后的值,而且它们都需要用long long型的,因为字符串转为int型很容易溢出,所以我们用长整型。对于加和减,diff就是即将要加上的数和即将要减去的数的负值,而对于乘来说稍有些复杂,此时的diff应该是上一次的变化的diff乘以即将要乘上的数,有点不好理解,那我们来举个例子,比如2+3*2,即将要运算到乘以2的时候,上次循环的curNum = 5, diff = 3, 而如果我们要算这个乘2的时候,新的变化值diff应为3*2=6,而我们要把之前+3操作的结果去掉,再加上新的diff,即(5-3)+6=8,即为新表达式2+3*2的值,有点难理解,大家自己一步一步推算吧。
还有一点需要注意的是,如果输入为”000″,0的话,容易出现以下的错误:
Wrong:[“0+0+0″,”0+0-0″,”0+0*0″,”0-0+0″,”0-0-0″,”0-0*0″,”0*0+0″,”0*0-0″,”0*0*0″,”0+00″,”0-00″,”0*00″,”00+0″,”00-0”,
“00*0″,”000”]
Correct:[“0*0*0″,”0*0+0″,”0*0-0″,”0+0*0″,”0+0+0″,”0+0-0″,”0-0*0″,”0-0+0″,”0-0-0”]
我们可以看到错误的结果中有0开头的字符串出现,明显这不是数字,所以我们要去掉这些情况,过滤方法也很简单,我们只要判断长度大于1且首字符是‘0’的字符串,将其滤去即可,参见代码如下:
class Solution { public: vector<string> addOperators(string num, int target) { vector<string> res; addOperatorsDFS(num, target, 0, 0, "", res); return res; } void addOperatorsDFS(string num, int target, long long diff, long long curNum, string out, vector<string> &res) { if (num.size() == 0 && curNum == target) { res.push_back(out); } for (int i = 1; i <= num.size(); ++i) { string cur = num.substr(0, i); if (cur.size() > 1 && cur[0] == '0') return; string next = num.substr(i); if (out.size() > 0) { addOperatorsDFS(next, target, stoll(cur), curNum + stoll(cur), out + "+" + cur, res); addOperatorsDFS(next, target, -stoll(cur), curNum - stoll(cur), out + "-" + cur, res); addOperatorsDFS(next, target, diff * stoll(cur), (curNum - diff) + diff * stoll(cur), out + "*" + cur, res); } else { addOperatorsDFS(next, target, stoll(cur), stoll(cur), cur, res); } } } };
参考资料:
https://leetcode.com/discuss/58547/accepted-c-solution