Given an array of size n, find the majority element. The majority element is the element that appears more than ⌊ n/2 ⌋
times.
You may assume that the array is non-empty and the majority element always exist in the array.
Example 1:
Input: [3,2,3] Output: 3
Example 2:
Input: [2,2,1,1,1,2,2] Output: 2
这是到求众数的问题,有很多种解法,其中我感觉比较好的有两种,一种是用哈希表,这种方法需要O(n)的时间和空间,另一种是用一种叫摩尔投票法 Moore Voting,需要O(n)的时间和O(1)的空间,比前一种方法更好。这种投票法先将第一个数字假设为众数,然后把计数器设为1,比较下一个数和此数是否相等,若相等则计数器加一,反之减一。然后看此时计数器的值,若为零,则将下一个值设为候选众数。以此类推直到遍历完整个数组,当前候选众数即为该数组的众数。不仔细弄懂摩尔投票法的精髓的话,过一阵子还是会忘记的,首先要明确的是这个叼炸天的方法是有前提的,就是数组中一定要有众数的存在才能使用,下面我们来看本算法的思路,这是一种先假设候选者,然后再进行验证的算法。我们现将数组中的第一个数假设为众数,然后进行统计其出现的次数,如果遇到同样的数,则计数器自增1,否则计数器自减1,如果计数器减到了0,则更换下一个数字为候选者。这是一个很巧妙的设定,也是本算法的精髓所在,为啥遇到不同的要计数器减1呢,为啥减到0了又要更换候选者呢?首先是有那个强大的前提存在,一定会有一个出现超过半数的数字存在,那么如果计数器减到0了话,说明目前不是候选者数字的个数已经跟候选者的出现个数相同了,那么这个候选者已经很weak,不一定能出现超过半数,我们选择更换当前的候选者。那有可能你会有疑问,那万一后面又大量的出现了之前的候选者怎么办,不需要担心,如果之前的候选者在后面大量出现的话,其又会重新变为候选者,直到最终验证成为正确的众数,佩服算法的提出者啊,代码如下:
C++ 解法一:
class Solution { public: int majorityElement(vector<int>& nums) { int res = 0, cnt = 0; for (int num : nums) { if (cnt == 0) {res = num; ++cnt;} else (num == res) ? ++cnt : --cnt; } return res; } };
Java 解法一:
public class Solution { public int majorityElement(int[] nums) { int res = 0, cnt = 0; for (int num : nums) { if (cnt == 0) {res = num; ++cnt;} else if (num == res) ++cnt; else --cnt; } return res; } }
下面这种解法利用到了位操作Bit Manipulation来解,将中位数按位来建立,从0到31位,每次统计下数组中该位上0和1的个数,如果1多,那么我们将结果res中该位变为1,最后累加出来的res就是中位数了,相当赞的方法,这种思路尤其在这道题的延伸Majority Element II中有重要的应用,参见代码如下:
C++ 解法二:
class Solution { public: int majorityElement(vector<int>& nums) { int res = 0, n = nums.size(); for (int i = 0; i < 32; ++i) { int ones = 0, zeros = 0; for (int num : nums) { if (ones > n / 2 || zeros > n / 2) break; if ((num & (1 << i)) != 0) ++ones; else ++zeros; } if (ones > zeros) res |= (1 << i); } return res; } };
Java 解法二:
public class Solution { public int majorityElement(int[] nums) { int res = 0, n = nums.length; for (int i = 0; i < 32; ++i) { int ones = 0, zeros = 0; for (int num : nums) { if (ones > n / 2 || zeros > n / 2) break; if ((num & (1 << i)) != 0) ++ones; else ++zeros; } if (ones > zeros) res |= (1 << i); } return res; } }
类似题目:
参考资料:
https://leetcode.com/problems/majority-element/discuss/51613/O(n)-time-O(1)-space-fastest-solution