[LeetCode] Min Stack 最小栈

 

Design a stack that supports push, pop, top, and retrieving the minimum element in constant time.

  • push(x) — Push element x onto stack.
  • pop() — Removes the element on top of the stack.
  • top() — Get the top element.
  • getMin() — Retrieve the minimum element in the stack.

 

Example:

MinStack minStack = new MinStack();
minStack.push(-2);
minStack.push(0);
minStack.push(-3);
minStack.getMin();   --> Returns -3.
minStack.pop();
minStack.top();      --> Returns 0.
minStack.getMin();   --> Returns -2.

 

这道最小栈跟原来的栈相比就是多了一个功能,可以返回该栈的最小值。使用两个栈来实现,一个栈来按顺序存储push进来的数据,另一个用来存出现过的最小值。代码如下:

 

C++ 解法一: 

class MinStack {
public:
    /** initialize your data structure here. */
    MinStack() {}
    
    void push(int x) {
        s1.push(x);
        if (s2.empty() || x <= s2.top()) s2.push(x);
    }
    
    void pop() {
        if (s1.top() == s2.top()) s2.pop();
        s1.pop();
    }
    
    int top() {
        return s1.top();
    }
    
    int getMin() {
        return s2.top();
    }
    
private:
    stack<int> s1, s2;
};

 

Java 解法一:

public class MinStack {
    private Stack<Integer> s1 = new Stack<>();
    private Stack<Integer> s2 = new Stack<>();
    
    /** initialize your data structure here. */
    public MinStack() {}
    
    public void push(int x) {
        s1.push(x);
        if (s2.isEmpty() || s2.peek() >= x) s2.push(x);
    }
    
    public void pop() {
        // Cannot write like the following:
        // if (s2.peek() == s1.peek()) s2.pop();
        // s1.pop();
        int x = s1.pop();
        if (s2.peek() == x) s2.pop();
    }
    
    public int top() {
        return s1.peek();
    }
    
    public int getMin() {
        return s2.peek();
    }
}

 

需要注意的是上面的Java解法中的pop()中,为什么不能用注释掉那两行的写法,我之前也不太明白为啥不能对两个stack同时调用peek()函数来比较,如果是这种写法,那么不管s1和s2对栈顶元素是否相等,永远返回false。这是为什么呢,这我们就要到Java的对于peek的定义了,对于peek()函数的返回值并不是int类型,而是一个Object类型,这是一个基本的对象类型,如果我们直接用==来比较的话,那么肯定不会返回true,因为是两个不同的对象,所以我们一定要先将一个转为int型,然后再和另一个进行比较,这样才能得到我们想要的答案,这也是Java和C++的一个重要的不同点吧。

那么下面我们再来看另一种解法,这种解法只用到了一个栈,还需要一个整型变量min_val来记录当前最小值,初始化为整型最大值,然后如果需要进栈的数字小于等于当前最小值min_val,那么将min_val压入栈,并且将min_val更新为当前数字。在出栈操作时,先将栈顶元素移出栈,再判断该元素是否和min_val相等,相等的话我们将min_val更新为新栈顶元素,再将新栈顶元素移出栈即可,参见代码如下:

 

C++ 解法二: 

class MinStack {
public:
    /** initialize your data structure here. */
    MinStack() {
        min_val = INT_MAX;
    }
    
    void push(int x) {
        if (x <= min_val) {
            st.push(min_val);
            min_val = x;
        }
        st.push(x);
    }
    
    void pop() {
        int t = st.top(); st.pop();
        if (t == min_val) {
            min_val = st.top(); st.pop();
        }
    }
    
    int top() {
        return st.top();
    }
    
    int getMin() {
        return min_val;
    }
private:
    int min_val;
    stack<int> st;
};

 

Java 解法二:

public class MinStack {
    private int min_val = Integer.MAX_VALUE;
    private Stack<Integer> s = new Stack<>();
    
    /** initialize your data structure here. */
    public MinStack() {}
    
    public void push(int x) {
        if (x <= min_val) {
            s.push(min_val);
            min_val = x;
        }
        s.push(x);
    }
    
    public void pop() {
        if (s.pop() == min_val) min_val = s.pop();
    }
    
    public int top() {
        return s.peek();
    }
    
    public int getMin() {
        return min_val;
    }
}

 

类似题目:

Sliding Window Maximum

Max Stack

 

参考资料:

https://leetcode.com/problems/min-stack/

https://leetcode.com/problems/min-stack/discuss/49014/java-accepted-solution-using-one-stack

https://leetcode.com/problems/min-stack/discuss/49016/c-using-two-stacks-quite-short-and-easy-to-understand

 

    原文作者:Grandyang
    原文地址: http://www.cnblogs.com/grandyang/p/4091064.html
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞