Levenshtein编辑距离

编辑距离概念描述:

编辑距离,又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。

例如将kitten一字转成sitting:

sitten (k→s)

sittin (e→i)

sitting (→g)

俄罗斯科学家Vladimir Levenshtein在1965年提出这个概念。

 

问题:找出字符串的编辑距离,即把一个字符串s1最少经过多少步操作变成编程字符串s2,操作有三种,添加一个字符,删除一个字符,修改一个字符

 

解析:

首先定义这样一个函数——edit(i, j),它表示第一个字符串的长度为i的子串到第二个字符串的长度为j的子串的编辑距离。

显然可以有如下动态规划公式:

if i == 0 且 j == 0,edit(i, j) = 0

if i == 0 且 j > 0,edit(i, j) = j

if i > 0 且j == 0,edit(i, j) = i

if i ≥ 1  且 j ≥ 1 ,edit(i, j) == min{ edit(i-1, j) + 1, edit(i, j-1) + 1, edit(i-1, j-1) + f(i, j) },当第一个字符串的第i个字符不等于第二个字符串的第j个字符时,f(i, j) = 1;否则,f(i, j) = 0。

代码如下:

int min(int a, int b)
{
    return a < b ? a : b;
}

int Levenshtein(const std::string& str1,const std::string& str2)
{
    int max1 = str1.size();
    int max2 = str2.size();
    int **ptr = new int*[max1 + 1];
    for(int i = 0; i < max1 + 1 ;i++)
    {
        ptr[i] = new int[max2 + 1];
    }
    //if i == 0 且 j == 0,edit(i, j) = 0
    //if i > 0 且j == 0,edit(i, j) = i
    for(int i = 0 ;i < max1 + 1 ;i++)
    {
        ptr[i][0] = i;
    }
    //if i == 0 且 j > 0,edit(i, j) = j
    for(int i = 0 ;i < max2 + 1;i++)
    {
        ptr[0][i] = i;
    }

    for(int i = 1 ;i < max1 + 1 ;i++)
    {
        for(int j = 1 ;j< max2 + 1; j++)
        {
            int d;
            int temp = min(ptr[i-1][j] + 1, ptr[i][j-1] + 1);
            if(str1[i-1] == str2[j-1])
            {
                d = 0 ;
            }
            else
            {
                d = 1 ;
            }
            ptr[i][j] = min(temp, ptr[i-1][j-1] + d);
            //if i ≥ 1  且 j ≥ 1 ,edit(i, j) == min{ edit(i-1, j) + 1, edit(i, j-1) + 1, edit(i-1, j-1) + f(i, j) },
            //当第一个字符串的第i个字符不等于第二个字符串的第j个字符时,f(i, j) = 1;否则,f(i, j) = 0。
        }
    }
    int dis = ptr[max1][max2];
    for(int i = 0; i < max1 + 1; i++)
    {
        delete[] ptr[i];
        ptr[i] = NULL;
    }
    delete[] ptr;
    ptr = NULL;
    return dis;
}

点赞