题目如下:
The gray code is a binary numeral system where two successive values differ in only one bit.
Given a non-negative integer n representing the total number of bits in the code, print the sequence of gray code. A gray code sequence must begin with 0.
For example, given n = 2, return [0,1,3,2]
. Its gray code sequence is:
00 - 0 01 - 1 11 - 3 10 - 2
Note:
For a given n, a gray code sequence is not uniquely defined.
For example, [0,2,3,1]
is also a valid gray code sequence according to the above definition.
For now, the judge is able to judge based on one instance of gray code sequence. Sorry about that.
题目意思就是将n位的二进制码转变成相应的格雷码。下面给出二进制码和格雷码的对应,举例n=3,从中找到转化的规律
十进制 二进制 格雷码
0 000 000
1 001 001
2 010 011
3 011 010
4 100 110
5 101 111
6 110 101
7 111 100
二进制转格雷码的规律为:先在二进制最左边添加0,举例 010 -> 0010, 再前一位与后一位异或,得到后一位的格雷码值,即:0^0=0; 0^1=1; 1^0=1; 因此得到格雷码011。
该过程其实就相当于将二进制右移一位,再与自身异或,举例: 010 右移一位得到 001; 001^010=011。
所以解题思路就是:
(1)根据n得到所有10进制的个数 1<<n
(2)对每个数,(i >>1)^i 即为i对应的格雷码
代码如下:
public class Solution {
public List<Integer> grayCode(int n) {
List<Integer> list = new ArrayList<Integer>();
int size = 1<< n;
for(int i = 0; i < size; i++){
int greycode = (i >> 1) ^ i;
list.add(greycode);
}
return list;
}
}