Given a binary tree
struct TreeLinkNode { TreeLinkNode *left; TreeLinkNode *right; TreeLinkNode *next; }
Populate each next pointer to point to its next right node. If there is no next right node, the next pointer should be set to NULL
.
Initially, all next pointers are set to NULL
.
Note:
- You may only use constant extra space.
- You may assume that it is a perfect binary tree (ie, all leaves are at the same level, and every parent has two children).
For example,
Given the following perfect binary tree,
1 / \ 2 3 / \ / \ 4 5 6 7
After calling your function, the tree should look like:
1 -> NULL / \ 2 -> 3 -> NULL / \ / \ 4->5->6->7 -> NULL
这道题实际上是树的层序遍历的应用,可以参考之前的博客Binary Tree Level Order Traversal 二叉树层序遍历,既然是遍历,就有递归和非递归两种方法,最好两种方法都要掌握,都要会写。下面先来看递归的解法,由于是完全二叉树,所以若节点的左子结点存在的话,其右子节点必定存在,所以左子结点的next指针可以直接指向其右子节点,对于其右子节点的处理方法是,判断其父节点的next是否为空,若不为空,则指向其next指针指向的节点的左子结点,若为空则指向NULL,代码如下:
C++ 解法一:
// Recursion, more than constant space class Solution { public: void connect(TreeLinkNode *root) { if (!root) return; if (root->left) root->left->next = root->right; if (root->right) root->right->next = root->next? root->next->left : NULL; connect(root->left); connect(root->right); } };
对于非递归的解法要稍微复杂一点,但也不算特别复杂,需要用到queue来辅助,由于是层序遍历,每层的节点都按顺序加入queue中,而每当从queue中取出一个元素时,将其next指针指向queue中下一个节点即可。代码如下:
C++ 解法二:
// Non-recursion, more than constant space class Solution { public: void connect(TreeLinkNode *root) { if (!root) return; queue<TreeLinkNode*> q; q.push(root); q.push(NULL); while (true) { TreeLinkNode *cur = q.front(); q.pop(); if (cur) { cur->next = q.front(); if (cur->left) q.push(cur->left); if (cur->right) q.push(cur->right); } else { if (q.size() == 0 || q.front() == NULL) return; q.push(NULL); } } } };
上面的方法巧妙的通过给queue中添加空指针NULL来达到分层的目的,使每层的最后一个节点的next可以指向NULL,那么我们可以换一种方法来实现分层,我们对于每层的开头元素开始遍历之前,先统计一下该层的总个数,用个for循环,这样for循环结束的时候,我们就知道该层已经被遍历完了,这也是一种好办法:
C++ 解法三:
class Solution { public: void connect(TreeLinkNode *root) { if (!root) return; queue<TreeLinkNode*> q; q.push(root); while (!q.empty()) { int size = q.size(); for (int i = 0; i < size; ++i) { TreeLinkNode *t = q.front(); q.pop(); if (i < size - 1) { t->next = q.front(); } if (t->left) q.push(t->left); if (t->right) q.push(t->right); } } } };
上面三种方法虽然叼,但是都不符合题意,题目中要求用O(1)的空间复杂度,所以我们来看下面这种碉堡了的方法。用两个指针start和cur,其中start标记每一层的起始节点,cur用来遍历该层的节点,设计思路之巧妙,不得不服啊:
C++ 解法四:
class Solution { public: void connect(TreeLinkNode *root) { if (!root) return; TreeLinkNode *start = root, *cur = NULL; while (start->left) { cur = start; while (cur) { cur->left->next = cur->right; if (cur->next) cur->right->next = cur->next->left; cur = cur->next; } start = start->left; } } };
类似题目:
Populating Next Right Pointers in Each Node II
参考资料:
https://discuss.leetcode.com/topic/2202/a-simple-accepted-solution