Given a singly linked list where elements are sorted in ascending order, convert it to a height balanced BST.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
Example:
Given the sorted linked list: [-10,-3,0,5,9], One possible answer is: [0,-3,9,-10,null,5], which represents the following height balanced BST: 0 / \ -3 9 / / -10 5
这道题是要求把有序链表转为二叉搜索树,和之前那道 Convert Sorted Array to Binary Search Tree 思路完全一样,只不过是操作的数据类型有所差别,一个是数组,一个是链表。数组方便就方便在可以通过index直接访问任意一个元素,而链表不行。由于二分查找法每次需要找到中点,而链表的查找中间点可以通过快慢指针来操作,可参见之前的两篇博客 Reorder List 和 Linked List Cycle II 有关快慢指针的应用。找到中点后,要以中点的值建立一个数的根节点,然后需要把原链表断开,分为前后两个链表,都不能包含原中节点,然后再分别对这两个链表递归调用原函数,分别连上左右子节点即可。代码如下:
解法一:
class Solution { public: TreeNode *sortedListToBST(ListNode* head) { if (!head) return NULL; if (!head->next) return new TreeNode(head->val); ListNode *slow = head, *fast = head, *last = slow; while (fast->next && fast->next->next) { last = slow; slow = slow->next; fast = fast->next->next; } fast = slow->next; last->next = NULL; TreeNode *cur = new TreeNode(slow->val); if (head != slow) cur->left = sortedListToBST(head); cur->right = sortedListToBST(fast); return cur; } };
我们也可以采用如下的递归方法,重写一个递归函数,有两个输入参数,子链表的起点和终点,因为知道了这两个点,链表的范围就可以确定了,而直接将中间部分转换为二叉搜索树即可,递归函数中的内容跟上面解法中的极其相似,参见代码如下:
解法二:
class Solution { public: TreeNode* sortedListToBST(ListNode* head) { if (!head) return NULL; return helper(head, NULL); } TreeNode* helper(ListNode* head, ListNode* tail) { if (head == tail) return NULL; ListNode *slow = head, *fast = head; while (fast != tail && fast->next != tail) { slow = slow->next; fast = fast->next->next; } TreeNode *cur = new TreeNode(slow->val); cur->left = helper(head, slow); cur->right = helper(slow->next, tail); return cur; } };
类似题目:
Convert Sorted Array to Binary Search Tree
参考资料:
https://leetcode.com/problems/convert-sorted-list-to-binary-search-tree/