[LeetCode] Sqrt(x) 求平方根

 

Implement int sqrt(int x).

Compute and return the square root of x.

 

这道题要求我们求平方根,我们能想到的方法就是算一个候选值的平方,然后和x比较大小,为了缩短查找时间,我们采用二分搜索法来找平方根,这里属于博主之前总结的LeetCode Binary Search Summary 二分搜索法小结中的第三类的变形,找最后一个不大于目标值的数,代码如下:

 

解法一:

class Solution {
public:
    int mySqrt(int x) {
        if (x <= 1) return x;
        int left = 0, right = x;
        while (left < right) {
            int mid = left + (right - left) / 2;
            if (x / mid >= mid) left = mid + 1;
            else right = mid;
        }
        return right - 1;
    }
};

 

这道题还有另一种解法,是利用牛顿迭代法,记得高数中好像讲到过这个方法,是用逼近法求方程根的神器,在这里也可以借用一下,可参见网友Annie Kim’s Blog的博客,因为要求x2 = n的解,令f(x)=x2-n,相当于求解f(x)=0的解,可以求出递推式如下:

xi+1=xi – (xi– n) / (2xi) = xi – xi / 2 + n / (2xi) = xi / 2 + n / 2xi = (xi + n/xi) / 2

 

解法二:

class Solution {
public:
    int mySqrt(int x) {
        if (x == 0) return 0;
        double res = 1, pre = 0;
        while (abs(res - pre) > 1e-6) {
            pre = res;
            res = (res + x / res) / 2;
        }
        return int(res);
    }
};

 

也是牛顿迭代法,写法更加简洁一些,注意为了防止越界,声明为长整型,参见代码如下:

 

解法三:

class Solution {
public:
    int mySqrt(int x) {
        long res = x;
        while (res * res > x) {
            res = (res + x / res) / 2;
        }
        return res;
    }
};

 

类似题目:

Pow(x, n)

Valid Perfect Square

 

参考资料:

https://leetcode.com/problems/sqrtx/description/

https://leetcode.com/problems/sqrtx/discuss/25130/My-clean-C++-code-8ms

https://leetcode.com/problems/sqrtx/discuss/25047/A-Binary-Search-Solution

https://leetcode.com/problems/sqrtx/discuss/25057/3-4-short-lines-Integer-Newton-Every-Language

 

    原文作者:Grandyang
    原文地址: http://www.cnblogs.com/grandyang/p/4346413.html
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞