[LeetCode] Permutations 全排列,Combinations,Combinations,Combinations

 

Given a collection of distinct integers, return all possible permutations.

Example:

Input: [1,2,3]
Output:
[
  [1,2,3],
  [1,3,2],
  [2,1,3],
  [2,3,1],
  [3,1,2],
  [3,2,1]
]

 

这道题是求全排列问题,给的输入数组没有重复项,这跟之前的那道 Combinations 和类似,解法基本相同,但是不同点在于那道不同的数字顺序只算一种,是一道典型的组合题,而此题是求全排列问题,还是用递归DFS来求解。这里我们需要用到一个visited数组来标记某个数字是否访问过,然后在DFS递归函数从的循环应从头开始,而不是从level开始,这是和 Combinations 不同的地方,其余思路大体相同。这里再说下level吧,其本质是记录当前已经拼出的个数,一旦其达到了nums数组的长度,说明此时已经是一个全排列了,因为再加数字的话,就会超出。还有就是,为啥这里的level要从0开始遍历,因为这是求全排列,每个位置都可能放任意一个数字,这样会有个问题,数字有可能被重复使用,由于全排列是不能重复使用数字的,所以我们需要用一个visited数组来标记某个数字是否使用过,代码如下:

 

解法一:

class Solution {
public:
    vector<vector<int>> permute(vector<int>& num) {
        vector<vector<int>> res;
        vector<int> out, visited(num.size(), 0);
        permuteDFS(num, 0, visited, out, res);
        return res;
    }
    void permuteDFS(vector<int>& num, int level, vector<int>& visited, vector<int>& out, vector<vector<int>>& res) {
        if (level == num.size()) {res.push_back(out); return;}
        for (int i = 0; i < num.size(); ++i) {
            if (visited[i] == 1) continue;
            visited[i] = 1;
            out.push_back(num[i]);
            permuteDFS(num, level + 1, visited, out, res);
            out.pop_back();
            visited[i] = 0;
        }
    }
};

上述解法的最终生成顺序为:[[1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1]]

 

还有一种递归的写法,更简单一些,这里是每次交换num里面的两个数字,经过递归可以生成所有的排列情况。这里你可能注意到,为啥在递归函数中,push_back()了之后没有返回呢,而解法一或者是 Combinations 的递归解法在更新结果res后都return了呢?其实如果你仔细看代码的话,此时start已经大于等于num.size()了,而下面的for循环的i是从start开始的,根本就不会执行for循环里的内容,就相当于return了,博主偷懒就没写了。但其实为了避免混淆,最好还是加上,免得和前面的搞混了,代码如下:

 

解法二:

class Solution {
public:
    vector<vector<int>> permute(vector<int>& num) {
        vector<vector<int>> res;
        permuteDFS(num, 0, res);
        return res;
    }
    void permuteDFS(vector<int>& num, int start, vector<vector<int>>& res) {
        if (start >= num.size()) res.push_back(num);
        for (int i = start; i < num.size(); ++i) {
            swap(num[start], num[i]);
            permuteDFS(num, start + 1, res);
            swap(num[start], num[i]);
        }
    }
};

上述解法的最终生成顺序为:[[1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,2,1], [3,1,2]]

 

最后再来看一种方法,这种方法是CareerCup书上的方法,也挺不错的,这道题是思想是这样的:

当n=1时,数组中只有一个数a1,其全排列只有一种,即为a1

当n=2时,数组中此时有a1a2,其全排列有两种,a1a2和a2a1,那么此时我们考虑和上面那种情况的关系,我们发现,其实就是在a1的前后两个位置分别加入了a2

当n=3时,数组中有a1a2a3,此时全排列有六种,分别为a1a2a3, a1a3a2, a2a1a3, a2a3a1, a3a1a2, 和 a3a2a1。那么根据上面的结论,实际上是在a1a2和a2a1的基础上在不同的位置上加入a3而得到的。

_ a_ a_ : a3a1a2, a1a3a2, a1a2a3

_ a_ a_ : a3a2a1, a2a3a1, a2a1a3

 

解法三:

class Solution {
public:
    vector<vector<int>> permute(vector<int>& num) {
        if (num.empty()) return vector<vector<int>>(1, vector<int>());
        vector<vector<int>> res;
        int first = num[0];
        num.erase(num.begin());
        vector<vector<int>> words = permute(num);
        for (auto &a : words) {
            for (int i = 0; i <= a.size(); ++i) {
                a.insert(a.begin() + i, first);
                res.push_back(a);
                a.erase(a.begin() + i);
            }
        }   
        return res;
    }
};

上述解法的最终生成顺序为:[[1,2,3], [2,1,3], [2,3,1], [1,3,2], [3,1,2], [3,2,1]]

 

上面的三种解法都是递归的,我们也可以使用迭代的方法来做。其实下面这个解法就上面解法的迭代写法,核心思路都是一样的,都是在现有的排列的基础上,每个空位插入一个数字,从而生成各种的全排列的情况,参见代码如下:

 

解法四:

class Solution {
public:
    vector<vector<int>> permute(vector<int>& num) {
        vector<vector<int>> res{{}};
        for (int a : num) {
            for (int k = res.size(); k > 0; --k) {
                vector<int> t = res.front();
                res.erase(res.begin());
                for (int i = 0; i <= t.size(); ++i) {
                    vector<int> one = t;
                    one.insert(one.begin() + i, a);
                    res.push_back(one);
                }
            }
        }
        return res;
    }
};

上述解法的最终生成顺序为:[[3,2,1], [2,3,1], [2,1,3], [3,1,2], [1,3,2], [1,2,3]]

 

下面这种解法就有些耍赖了,用了STL的内置函数 next_permutation(),专门就是用来返回下一个全排列,耳边又回响起了诸葛孔明的名言,我从未见过如此…投机取巧…的解法!

 

解法五:

class Solution {
public:
    vector<vector<int>> permute(vector<int>& num) {
        vector<vector<int>> res;
        sort(num.begin(), num.end());
        res.push_back(num);
        while (next_permutation(num.begin(), num.end())) {
            res.push_back(num);
        }
        return res;
    }
};

上述解法的最终生成顺序为:[[1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1]]

 

类似题目:

Next Permutation

Permutations II

Permutation Sequence

Combinations

 

参考资料:

https://leetcode.com/problems/permutations/

https://leetcode.com/problems/permutations/discuss/18462/Share-my-three-different-solutions

https://leetcode.com/problems/permutations/discuss/18255/Share-my-short-iterative-JAVA-solution

https://leetcode.com/problems/permutations/discuss/18239/A-general-approach-to-backtracking-questions-in-Java-(Subsets-Permutations-Combination-Sum-Palindrome-Partioning)

 

    原文作者:Grandyang
    原文地址: http://www.cnblogs.com/grandyang/p/4358848.html
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞