Description:
- Difficulty:Medium
- Total Accepted:7.1K
- Total Submissions:19.3K
- Contributor:
Given an unsorted array of integers, find the number of longest increasing subsequence.
Example 1:
Input: [1,3,5,4,7] Output: 2 Explanation: The two longest increasing subsequence are [1, 3, 4, 7] and [1, 3, 5, 7].
Example 2:
Input: [2,2,2,2,2] Output: 5 Explanation: The length of longest continuous increasing subsequence is 1, and there are 5 subsequences' length is 1, so output 5.
Note:Length of the given array will be not exceed 2000 and the answer is guaranteed to be fit in 32-bit signed int.
Thought:
len[k]
: 表示以 nums[k]
为末尾的最长子序列长度。
max[k]
: 表示以 nums[k]
为末尾的最长子序列个数
对于每个num[i],遍历数组中他前面的所有num,找到比他小的num[j],如果此时num[j]长度大于当前num[i]的长度,则num[i]可以排在num[j]后面,即len[i]=len[j]+1。如果此时num[i]的长度与num[j] + 1的长度相等,说明这是以num[i]结尾的另一个最长子串,子序列有max[i] += max[j]。
Code:
class Solution {
public:
int findNumberOfLIS(vector<int>& nums) {
int length = nums.size();
int l = 0;
int count = 0;
vector<int> len(length + 1, 1);
vector<int> max(length + 1, 1);
for (int i = 1; i < length; i++) {
for (int j = 0; j<i; j++) {
if (nums[j] < nums[i]) {
if (len[j] + 1 > len[i]) {
len[i] = len[j] + 1;
max[i] = max[j];
}
else if (len[j] + 1 == len[i]) {
max[i] += max[j];
}
}
}
}
for (int i = 0; i < length; i++) l = l > len[i] ? l : len[i];
for (int i = 0; i < length; i++) {
if (len[i] == l) count += max[i];
}
return count;
}
};