简单的遗传算法(Genetic Algorithm)源代码

这是一个非常简单的遗传算法源代码,是由Denis Cormier (North Carolina State University) 开发的,Sita S.Raghavan (University of North Carolina at Charlotte) 修正。代码保证尽可能少,实际上也不必查错。对一特定的应用修正此代码,用户只需改变常数的定义并且定义“评价函数”即可。注意代码的设计是求最大值,其中的目标函数只能取正值;且函数值和个体的适应值之间没有区别。该系统使用比率选择、精华模型、单点杂交和均匀变异。如果用 Gaussian 变异替换均匀变异,可能得到更好的效果。代码没有任何图形,甚至也没有屏幕输出,主要是保证在平台之间的高可移植性。要求输入的文件应该命名为‘gadata.txt ’;系统产生的输出文件为‘galog.txt ’。输入的文件由几行组成:数目对应于变量数。且每一行提供次序——对应于变量的上下界。如第一行为第一个变量提供上下界,第二行为第二个变量提供上下界,等等。

/**************************************************************************/

/* This is a simple genetic algorithm implementation where the */

/* evaluation function takes positive values only and the      */

/* fitness of an individual is the same as the value of the    */

/* objective function                                           */

/**************************************************************************/

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

/* Change any of these parameters to match your needs */

#define POPSIZE 50               /* population size */

#define MAXGENS 1000             /* max. number of generations */

#define NVARS 3                  /* no. of problem variables */

#define PXOVER 0.8               /* probability of crossover */

#define PMUTATION 0.15           /* probability of mutation */

#define TRUE 1

#define FALSE 0

int generation;                  /* current generation no. */

int cur_best;                    /* best individual */

FILE *galog;                     /* an output file */

struct genotype /* genotype (GT), a member of the population */

{

  double gene[NVARS];        /* a string of variables */

  double fitness;            /* GT’s fitness */

  double upper[NVARS];       /* GT’s variables upper bound */

  double lower[NVARS];       /* GT’s variables lower bound */

  double rfitness;           /* relative fitness */

  double cfitness;           /* cumulative fitness */

};

struct genotype population[POPSIZE+1];    /* population */

struct genotype newpopulation[POPSIZE+1]; /* new population; */

                                           /* replaces the */

                                          /* old generation */

/* Declaration of procedures used by this genetic algorithm */

void initialize(void);

double randval(double, double);

void evaluate(void);

void keep_the_best(void);

void elitist(void);

void select(void);

void crossover(void);

void Xover(int,int);

void swap(double *, double *);

void mutate(void);

void report(void);

/***************************************************************/

/* Initialization function: Initializes the values of genes    */

/* within the variables bounds. It also initializes (to zero)  */

/* all fitness values for each member of the population. It    */

/* reads upper and lower bounds of each variable from the      */

/* input file `gadata.txt’. It randomly generates values       */

/* between these bounds for each gene of each genotype in the  */

/* population. The format of the input file `gadata.txt’ is    */

/* var1_lower_bound var1_upper bound                           */

/* var2_lower_bound var2_upper bound …                       */

/***************************************************************/

void initialize(void)

{

FILE *infile;

int i, j;

double lbound, ubound;

if ((infile = fopen(“gadata.txt”,”r”))==NULL)

      {

       fprintf(galog,”/nCannot open input file!/n”);

      exit(1);

      }

/* initialize variables within the bounds */

for (i = 0; i < NVARS; i++)

      {

      fscanf(infile, “%lf”,&lbound);

      fscanf(infile, “%lf”,&ubound);

      for (j = 0; j < POPSIZE; j++)

           {

           population[j].fitness = 0;

           population[j].rfitness = 0;

           population[j].cfitness = 0;

           population[j].lower[i] = lbound;

           population[j].upper[i]= ubound;

           population[j].gene[i] = randval(population[j].lower[i],

                                   population[j].upper[i]);

           }

      }

fclose(infile);

}

/***********************************************************/

/* Random value generator: Generates a value within bounds */

/***********************************************************/

double randval(double low, double high)

{

double val;

val = ((double)(rand()%1000)/1000.0)*(high – low) + low;

return(val);

}

/*************************************************************/

/* Evaluation function: This takes a user defined function.  */

/* Each time this is changed, the code has to be recompiled. */

/* The current function is:  x[1]^2-x[1]*x[2]+x[3]           */

/*************************************************************/

void evaluate(void)

{

int mem;

int i;

double x[NVARS+1];

for (mem = 0; mem < POPSIZE; mem++)

      {

      for (i = 0; i < NVARS; i++)

            x[i+1] = population[mem].gene[i];

     

      population[mem].fitness = (x[1]*x[1]) – (x[1]*x[2]) + x[3];

      }

}

/***************************************************************/

/* Keep_the_best function: This function keeps track of the    */

/* best member of the population. Note that the last entry in  */

/* the array Population holds a copy of the best individual    */

/***************************************************************/

void keep_the_best()

{

int mem;

int i;

cur_best = 0; /* stores the index of the best individual */

for (mem = 0; mem < POPSIZE; mem++)

      {

      if (population[mem].fitness > population[POPSIZE].fitness)

            {

            cur_best = mem;

            population[POPSIZE].fitness = population[mem].fitness;

            }

      }

/* once the best member in the population is found, copy the genes */

for (i = 0; i < NVARS; i++)

      population[POPSIZE].gene[i] = population[cur_best].gene[i];

}

/****************************************************************/

/* Elitist function: The best member of the previous generation */

/* is stored as the last in the array. If the best member of    */

/* the current generation is worse then the best member of the  */

/* previous generation, the latter one would replace the worst  */

/* member of the current population                             */

/****************************************************************/

void elitist()

{

int i;

double best, worst;             /* best and worst fitness values */

int best_mem, worst_mem; /* indexes of the best and worst member */

best = population[0].fitness;

worst = population[0].fitness;

for (i = 0; i < POPSIZE – 1; ++i)

      {

      if(population[i].fitness > population[i+1].fitness)

            {     

            if (population[i].fitness >= best)

                  {

                  best = population[i].fitness;

                  best_mem = i;

                  }

            if (population[i+1].fitness <= worst)

                  {

                  worst = population[i+1].fitness;

                  worst_mem = i + 1;

                  }

            }

      else

            {

            if (population[i].fitness <= worst)

                  {

                  worst = population[i].fitness;

                  worst_mem = i;

                  }

            if (population[i+1].fitness >= best)

                  {

                  best = population[i+1].fitness;

                  best_mem = i + 1;

                  }

            }

      }

/* if best individual from the new population is better than */

/* the best individual from the previous population, then    */

/* copy the best from the new population; else replace the   */

/* worst individual from the current population with the     */

/* best one from the previous generation                     */

if (best >= population[POPSIZE].fitness)

    {

    for (i = 0; i < NVARS; i++)

       population[POPSIZE].gene[i] = population[best_mem].gene[i];

    population[POPSIZE].fitness = population[best_mem].fitness;

    }

else

    {

    for (i = 0; i < NVARS; i++)

       population[worst_mem].gene[i] = population[POPSIZE].gene[i];

    population[worst_mem].fitness = population[POPSIZE].fitness;

    }

}

/**************************************************************/

/* Selection function: Standard proportional selection for    */

/* maximization problems incorporating elitist model – makes  */

/* sure that the best member survives                         */

/**************************************************************/

void select(void)

{

int mem, i, j, k;

double sum = 0;

double p;

/* find total fitness of the population */

for (mem = 0; mem < POPSIZE; mem++)

      {

      sum += population[mem].fitness;

      }

/* calculate relative fitness */

for (mem = 0; mem < POPSIZE; mem++)

      {

      population[mem].rfitness =  population[mem].fitness/sum;

      }

population[0].cfitness = population[0].rfitness;

/* calculate cumulative fitness */

for (mem = 1; mem < POPSIZE; mem++)

      {

      population[mem].cfitness =  population[mem-1].cfitness +      

                          population[mem].rfitness;

      }

/* finally select survivors using cumulative fitness. */

for (i = 0; i < POPSIZE; i++)

      {

      p = rand()%1000/1000.0;

      if (p < population[0].cfitness)

            newpopulation[i] = population[0];     

      else

            {

            for (j = 0; j < POPSIZE;j++)     

                   if (p >= population[j].cfitness &&

                              p<population[j+1].cfitness)

                        newpopulation[i] = population[j+1];

            }

      }

/* once a new population is created, copy it back */

for (i = 0; i < POPSIZE; i++)

      population[i] = newpopulation[i];     

}

/***************************************************************/

/* Crossover selection: selects two parents that take part in  */

/* the crossover. Implements a single point crossover          */

/***************************************************************/

void crossover(void)

{

int i, mem, one;

int first  =  0; /* count of the number of members chosen */

double x;

for (mem = 0; mem < POPSIZE; ++mem)

      {

      x = rand()%1000/1000.0;

      if (x < PXOVER)

            {

            ++first;

            if (first % 2 == 0)

                  Xover(one, mem);

            else

                  one = mem;

            }

      }

}

/**************************************************************/

/* Crossover: performs crossover of the two selected parents. */

/**************************************************************/

void Xover(int one, int two)

{

int i;

int point; /* crossover point */

/* select crossover point */

if(NVARS > 1)

   {

   if(NVARS == 2)

         point = 1;

   else

         point = (rand() % (NVARS – 1)) + 1;

   for (i = 0; i < point; i++)

        swap(&population[one].gene[i], &population[two].gene[i]);

   }

}

/*************************************************************/

/* Swap: A swap procedure that helps in swapping 2 variables */

/*************************************************************/

void swap(double *x, double *y)

{

double temp;

temp = *x;

*x = *y;

*y = temp;

}

/**************************************************************/

/* Mutation: Random uniform mutation. A variable selected for */

/* mutation is replaced by a random value between lower and   */

/* upper bounds of this variable                              */

/**************************************************************/

void mutate(void)

{

int i, j;

double lbound, hbound;

double x;

for (i = 0; i < POPSIZE; i++)

      for (j = 0; j < NVARS; j++)

            {

            x = rand()%1000/1000.0;

            if (x < PMUTATION)

                  {

                  /* find the bounds on the variable to be mutated */

                  lbound = population[i].lower[j];

                  hbound = population[i].upper[j]; 

                  population[i].gene[j] = randval(lbound, hbound);

                  }

            }

}

/***************************************************************/

/* Report function: Reports progress of the simulation. Data   */

/* dumped into the  output file are separated by commas        */

/***************************************************************/

void report(void)

{

int i;

double best_val;            /* best population fitness */

double avg;                 /* avg population fitness */

double stddev;              /* std. deviation of population fitness */

double sum_square;          /* sum of square for std. calc */

double square_sum;          /* square of sum for std. calc */

double sum;                 /* total population fitness */

sum = 0.0;

sum_square = 0.0;

for (i = 0; i < POPSIZE; i++)

      {

      sum += population[i].fitness;

       sum_square += population[i].fitness * population[i].fitness;

      }

avg = sum/(double)POPSIZE;

square_sum = avg * avg * POPSIZE;

stddev = sqrt((sum_square – square_sum)/(POPSIZE – 1));

best_val = population[POPSIZE].fitness;

fprintf(galog, “/n%5d,       %6.3f, %6.3f, %6.3f /n/n”, generation,

                                      best_val, avg, stddev);

}

/**************************************************************/

/* Main function: Each generation involves selecting the best */

/* members, performing crossover & mutation and then          */

/* evaluating the resulting population, until the terminating */

/* condition is satisfied                                     */

/**************************************************************/

void main(void)

{

int i;

if ((galog = fopen(“galog.txt”,”w”))==NULL)

      {

      exit(1);

      }

generation = 0;

fprintf(galog, “/n generation  best  average  standard /n”);

fprintf(galog, ” number      value fitness  deviation /n”);

initialize();

evaluate();

keep_the_best();

while(generation<MAXGENS)

      {

      generation++;

      select();

      crossover();

      mutate();

      report();

      evaluate();

      elitist();

      }

fprintf(galog,”/n/n Simulation completed/n”);

fprintf(galog,”/n Best member: /n”);

for (i = 0; i < NVARS; i++)

   {

   fprintf (galog,”/n var(%d) = %3.3f”,i,population[POPSIZE].gene[i]);

   }

fprintf(galog,”/n/n Best fitness = %3.3f”,population[POPSIZE].fitness);

fclose(galog);

printf(“Success/n”);

}

/***************************************************************/

    原文作者:遗传算法
    原文地址: https://blog.csdn.net/leopardaa521/article/details/4221912
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞