粒子群优化算法与遗传脚本

粒子群算法脚本:

  • PSO.m
%% PSO
%% 清空环境
clc
clear
close all
warning off
%% 参数初始化
%粒子群算法中的两个参数
c1 = 1.49445;
c2 = 1.49445;

maxgen=200;   % 进化次数 
sizepop=200;   %种群规模

%粒子更新速度
Vmax=1;
Vmin=-1;

%种群
popmax=50;
popmin=-50;

% best_particle number, that is to say, the number of x is equal to pai_num
par_num=7;

%% 产生初始粒子和速度
for i=1:sizepop
    %随机产生一个种群
    pop(i,:)=1.*rands(1,par_num);    %初始种群
    V(i,:)=1.*rands(1,par_num);  %初始化速度
    %计算适应度
    fitness(i)=fun(pop(i,:));   %染色体的适应度
end

%找最好的适应度值
[bestfitness bestindex]=min(fitness);
zbest=pop(bestindex,:);     %全局最佳
gbest=pop;                  %个体最佳
fitnessgbest=fitness;       %个体最佳适应度值
fitnesszbest=bestfitness;   %全局最佳适应度值

%% 迭代寻优
for i=1:maxgen
    i
    for j=1:sizepop

        %速度更新
        V(j,:) = V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:));
        V(j,find(V(j,:)>Vmax))=Vmax;
        V(j,find(V(j,:)<Vmin))=Vmin;

        %种群更新
        pop(j,:)=pop(j,:)+0.5*V(j,:);
        pop(j,find(pop(j,:)>popmax))=popmax;
        pop(j,find(pop(j,:)<popmin))=popmin;

        %自适应变异
        if rand>0.8
            k=ceil(par_num*rand);
            pop(j,k)=rand;
        end

        %适应度值
        if 0.072*pop(j,1)+0.063*pop(j,2)+0.057*pop(j,3)+0.05*pop(j,4)+0.032*pop(j,5)+0.0442*pop(j,6)+0.0675*pop(j,7)<=264.4
            if 128*pop(j,1)+78.1*pop(j,2)+64.1*pop(j,3)+43*pop(j,4)+58.1*pop(j,5)+36.9*pop(j,6)+50.5*pop(j,7)<=69719
                    fitness(j)=fun(pop(j,:));
            end
        end

        %个体最优更新
        if fitness(j) < fitnessgbest(j)
            gbest(j,:) = pop(j,:);
            fitnessgbest(j) = fitness(j);
        end

        %群体最优更新
        if fitness(j) < fitnesszbest
            zbest = pop(j,:);
            fitnesszbest = fitness(j);
        end

    end

    yy(i)=fitnesszbest;     
end

%% 结果
disp '*************best particle number****************'
zbest

%%
plot(yy,'linewidth',2);
title(['适应度曲线 ' '终止代数=' num2str(maxgen)]);
xlabel('进化代数');ylabel('适应度');
grid on

遗传脚本:

  • GA.m
%% GA
clc % 清屏
clear all; % 删除workplace变量
close all; % 关掉显示图形窗口
warning off
%% 参数初始化
popsize=100;              %种群规模
lenchrom=7;              %变量字串长度

pc=0.7;                  %设置交叉概率,本例中交叉概率是定值,若想设置变化的交叉概率可用表达式表示,或从写一个交叉概率函数,例如用神经网络训练得到的值作为交叉概率
pm=0.3;                  %设置变异概率,同理也可设置为变化的

maxgen=100;   % 进化次数 

%种群
popmax=50;
popmin=0;
bound=[popmin popmax;popmin popmax;popmin popmax;popmin popmax;popmin popmax;popmin popmax;popmin popmax];  %变量范围

%% 产生初始粒子和速度
for i=1:popsize
    %随机产生一个种群
    GApop(i,:)=Code(lenchrom,bound);       %随机产生个体
    %计算适应度
    fitness(i)=fun(GApop(i,:));            %染色体的适应度
end

%找最好的染色体
[bestfitness bestindex]=min(fitness);
zbest=GApop(bestindex,:);   %全局最佳
gbest=GApop;                %个体最佳
fitnessgbest=fitness;       %个体最佳适应度值
fitnesszbest=bestfitness;   %全局最佳适应度值

%% 迭代寻优
for i=1:maxgen
        i
        %种群更新 GA选择更新
        GApop=Select2(GApop,fitness,popsize);

        % 交叉操作 GA
        GApop=Cross(pc,lenchrom,GApop,popsize,bound);

        % 变异操作 GA变异
        GApop=Mutation(pm,lenchrom,GApop,popsize,[i maxgen],bound);

        pop=GApop;

      for j=1:popsize
        %适应度值
        if 0.072*pop(j,1)+0.063*pop(j,2)+0.057*pop(j,3)+0.05*pop(j,4)+0.032*pop(j,5)+0.0442*pop(j,6)+0.0675*pop(j,7)<=264.4
            if 128*pop(j,1)+78.1*pop(j,2)+64.1*pop(j,3)+43*pop(j,4)+58.1*pop(j,5)+36.9*pop(j,6)+50.5*pop(j,7)<=69719
                    fitness(j)=fun(pop(j,:));
            end
        end
        %个体最优更新
        if fitness(j) < fitnessgbest(j)
            gbest(j,:) = pop(j,:);
            fitnessgbest(j) = fitness(j);
        end

        %群体最优更新
        if fitness(j) < fitnesszbest
            zbest = pop(j,:);
            fitnesszbest = fitness(j);
        end

    end

    yy(i)=fitnesszbest;     
end

%% 结果
disp '*************best particle number****************'
zbest

%%
plot(yy,'linewidth',2);
title(['适应度曲线 ' '终止代数=' num2str(maxgen)]);
xlabel('进化代数');ylabel('适应度');
grid on
  • Code.m
function ret=Code(lenchrom,bound)
%本函数将变量编码成染色体,用于随机初始化一个种群
% lenchrom input : 染色体长度
% bound input : 变量的取值范围
% ret output: 染色体的编码值

flag=0;
while flag==0
    pick=rand(1,lenchrom);
    ret=bound(:,1)'+(bound(:,2)-bound(:,1))'.*pick; %线性插值
    flag=test(lenchrom,bound,ret);             %检验染色体的可行性
end
  • fun.m
function ret=Code(lenchrom,bound)
%本函数将变量编码成染色体,用于随机初始化一个种群
% lenchrom input : 染色体长度
% bound input : 变量的取值范围
% ret output: 染色体的编码值

flag=0;
while flag==0
    pick=rand(1,lenchrom);
    ret=bound(:,1)'+(bound(:,2)-bound(:,1))'.*pick; %线性插值
    flag=test(lenchrom,bound,ret);             %检验染色体的可行性
end
  • Select2.m
function ret=Select(individuals,fitness,sizepop)
% 本函数对每一代种群中的染色体进行选择,以进行后面的交叉和变异
% individuals input : 种群信息
% fitness input : 适应度
% sizepop input : 种群规模
% opts input : 选择方法的选择
% ret output : 经过选择后的种群

fitness= 1./(fitness);
sumfitness=sum(fitness);
sumf=fitness./sumfitness;
index=[];
for i=1:sizepop   %转sizepop次轮盘
    pick=rand;
    while pick==0
        pick=rand;
    end
    for j=1:sizepop
        pick=pick-sumf(j);
        if pick<0
            index=[index j];
            break;  %寻找落入的区间,此次转轮盘选中了染色体i,注意:在转sizepop次轮盘的过程中,有可能会重复选择某些染色体
        end
    end
end
individuals=individuals(index,:);
fitness=fitness(index);
ret=individuals;
  • Cross.m
function ret=Cross(pcross,lenchrom,chrom,sizepop,bound)
%本函数完成交叉操作
% pcorss input : 交叉概率
% lenchrom input : 染色体的长度
% chrom input : 染色体群
% sizepop input : 种群规模
% ret output : 交叉后的染色体

for i=1:sizepop 

    % 随机选择两个染色体进行交叉
    pick=rand(1,2);
    while prod(pick)==0
        pick=rand(1,2);
    end
    index=ceil(pick.*sizepop);
    % 交叉概率决定是否进行交叉
    pick=rand;
    while pick==0
        pick=rand;
    end
    if pick>pcross
        continue;
    end
    flag=0;
    while flag==0
        % 随机选择交叉位置
        pick=rand;
        while pick==0
            pick=rand;
        end
        pos=ceil(pick.*sum(lenchrom)); %随机选择进行交叉的位置,即选择第几个变量进行交叉,注意:两个染色体交叉的位置相同
        pick=rand; %交叉开始
        v1=chrom(index(1),pos);
        v2=chrom(index(2),pos);
        chrom(index(1),pos)=pick*v2+(1-pick)*v1;
        chrom(index(2),pos)=pick*v1+(1-pick)*v2; %交叉结束
        flag1=test(lenchrom,bound,chrom(index(1),:));  %检验染色体1的可行性
        flag2=test(lenchrom,bound,chrom(index(2),:));  %检验染色体2的可行性
        if   flag1*flag2==0
            flag=0;
        else flag=1;
        end    %如果两个染色体不是都可行,则重新交叉
    end
end
ret=chrom;
  • Mutation.m
function ret=Mutation(pmutation,lenchrom,chrom,sizepop,pop,bound)
% 本函数完成变异操作
% pcorss input : 变异概率
% lenchrom input : 染色体长度
% chrom input : 染色体群
% sizepop input : 种群规模
% pop input : 当前种群的进化代数和最大的进化代数信息
% ret output : 变异后的染色体

for i=1:sizepop  
    % 随机选择一个染色体进行变异
    pick=rand;
    while pick==0
        pick=rand;
    end
    index=ceil(pick*sizepop);
    % 变异概率决定该轮循环是否进行变异
    pick=rand;
    if pick>pmutation
        continue;
    end
    flag=0;
    while flag==0
        % 变异位置
        pick=rand;
        while pick==0
            pick=rand;
        end
        pos=ceil(pick*sum(lenchrom));  %随机选择了染色体变异的位置,即选择了第pos个变量进行变异
        v=chrom(i,pos);
        v1=v-bound(pos,1);
        v2=bound(pos,2)-v;
        pick=rand; %变异开始
        if pick>0.5
            delta=v2*(1-pick^((1-pop(1)/pop(2))^2));
            chrom(i,pos)=v+delta;
        else
            delta=v1*(1-pick^((1-pop(1)/pop(2))^2));
            chrom(i,pos)=v-delta;
        end   %变异结束
        flag=test(lenchrom,bound,chrom(i,:));     %检验染色体的可行性
    end
end
ret=chrom;
  • test.m
function flag=test(lenchrom,bound,code)
% lenchrom input : 染色体长度
% bound input : 变量的取值范围
% code output: 染色体的编码值

flag=1;
[n,m]=size(code);

for i=1:n
    if code(i)<bound(i,1) || code(i)>bound(i,2)
        flag=0;
    end
end

有问题留言,第一时间回复。

    原文作者:遗传算法
    原文地址: https://blog.csdn.net/lusongno1/article/details/54731227
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞