原文:http://www.aslike.net/showart.asp?id=147 RC4加密算法是大名鼎鼎的RSA三人组中的头号人物Ron Rivest在1987年设计的密钥长度可变的流加密算法簇。之所以称其为簇,是由于其核心部分的S-box长度可为任意,但一般为256字节。该算法的速度可以达到
DES加密的10倍左右,且具有很高级别的非线性。RC4起初是用于保护商业机密的。但是在1994年9月,它的算法被发布在互联网上,也就不再有什么商业机密了。RC4也被叫做ARC4(Alleged RC4——所谓的RC4),因为RSA从来就没有正式发布过这个算法。
原理
RC4算法的原理很简单,包括初始化算法(KSA)和伪随机子密码生成算法(PRGA)两大部分。假设S-box的长度为256,密钥长度为Len。先来看看算法的初始化部分(用C代码表示): 其中,参数1是一个256长度的char型数组,定义为: unsigned char sBox[256]; 参数2是密钥,其内容可以随便定义:char key[256]; 参数3是密钥的长度,Len = strlen(key); void rc4_init(unsigned char *s, unsigned char *key, unsigned long Len) { int i =0, j = 0, k[256] = {0}; unsigned char tmp = 0; for(i=0;i<256;i++) { s[i]=i; k[i]=key[i%Len]; } for (i=0; i<256; i++) { j=(j+s[i]+k[i])%256; tmp = s[i]; s[i] = s[j]; //交换s[i]和s[j] s[j] = tmp; } } 在初始化的过程中,密钥的主要功能是将S-box搅乱,i确保S-box的每个元素都得到处理,j保证S-box的搅乱是随机的。而不同的S-box在经过伪随机子密码生成算法的处理后可以得到不同的子密钥序列,将S-box和明文进行xor运算,得到密文,解密过程也完全相同。 再来看看算法的加密部分(用C代码表示): 其中,参数1是上边rc4_init函数中,被搅乱的S-box; 参数2是需要加密的数据data; 参数3是data的长度. void rc4_crypt(unsigned char *s, unsigned char *Data, unsigned long Len) { int x = 0, y = 0, t = 0, i = 0; unsigned char tmp; for(i=0;i<Len;i++) { x=(x+1)%256; y=(y+s[x])%256; tmp = s[x]; s[x] = s[y]; //交换s[x]和s[y] s[y] = tmp; t=(s[x]+s[y])%256; Data[i] ^= s[t]; } } 最后,在main函数中,调用顺序如下: void main() { unsigned char s[256] = {0};//S-box char key[256] = {“just for test”}; char pData[512] = “这是一个用来加密的数据Data”; ULONG len = strlen(pData); printf(“pData = %s\n”,pData); printf(“key = %s, length = %d\n”,key,strlen(key)); rc4_init(s,(unsigned char *)key,strlen(key));//初始化 rc4_crypt(s,(unsigned char *)pData,len);//加密 printf(“pData = %s\n\n”,pData); rc4_crypt(s,(unsigned char *)pData,len);//解密 printf(“pData = %s\n\n”,pData); } 因此最终的完整程序是: //程序开始 #include<stdio.h> #include<string.h> typedef unsigned long ULONG; void rc4_init(unsigned char *s, unsigned char *key, unsigned long Len) //初始化函数 { int i =0, j = 0; char k[256] = {0}; unsigned char tmp = 0; for(i=0;i<256;i++) { s[i]=i; k[i]=key[i%Len]; } for (i=0; i<256; i++) { j=(j+s[i]+k[i])%256; tmp = s[i]; s[i] = s[j]; //交换s[i]和s[j] s[j] = tmp; } } void rc4_crypt(unsigned char *s, unsigned char *Data, unsigned long Len) //加解密 { int i = 0, j = 0, t = 0; unsigned long k = 0; unsigned char tmp; for(k=0;k<Len;k++) { i=(i+1)%256; j=(j+s[i])%256; tmp = s[i]; s[i] = s[j]; //交换s[x]和s[y] s[j] = tmp; t=(s[i]+s[j])%256; Data[k] ^= s[t]; } } void main() { unsigned char s[256] = {0},s2[256] = {0}; //S-box char key[256] = {“just for test”}; char pData[512] = “这是一个用来加密的数据Data”; ULONG len = strlen(pData); printf(“pData = %s\n”,pData); printf(“key = %s, length = %d\n\n”,key,strlen(key)); rc4_init(s,(unsigned char *)key,strlen(key)); //已经完成了初始化 printf(“完成对S[i]的初始化,如下:\n\n”); for (int i=0; i<256; i++) { printf(“%-3d “,s[i]); } printf(“\n\n”); for(i=0;i<256;i++)//用s2[i]暂时保留经过初始化的s[i],很重要的!!! { s2[i]=s[i]; } printf(“已经初始化,现在加密:\n\n”); rc4_crypt(s,(unsigned char *)pData,len);//加密 printf(“pData = %s\n\n”,pData); printf(“已经加密,现在解密:\n\n”); rc4_init(s,(unsigned char *)key, strlen(key)); //初始化密钥 rc4_crypt(s2,(unsigned char *)pData,len);//解密 printf(“pData = %s\n\n”,pData); } //程序完
漏洞
由于
RC4算法加密是采用的xor,所以,一旦子密钥序列出现了重复,密文就有可能被破解。关于如何破解xor加密,请参看Bruce Schneier的Applied Cryptography一书的1.4节Simple XOR,在此我就不细说了。那么,RC4算法生成的子密钥序列是否会出现重复呢?由于存在部分弱密钥,使得子密钥序列在不到100万字节内就发生了完全的重复,如果是部分重复,则可能在不到10万字节内就能发生重复,因此,推荐在使用RC4算法时,必须对加密密钥进行测试,判断其是否为弱密钥。其不足主要体现于,在无线网络中IV(初始化向量)不变性漏洞。 而且,根据目前的分析结果,没有任何的分析对于密钥长度达到128位的RC4有效,所以,RC4是目前最安全的加密算法之一,大家可以放心使用!