一起聊聊什么是P问题、NP问题、NPC问题

概念

P问题:如果一个问题可以找到一个能在多项式的时间里解决它的算法,那么这个问题就属于P问题。通常NOI和NOIP不属于P类问题,我们常见到的一些信息奥赛的题目都是P问题。
NP问题:可以在多项式的时间里猜出一个解的问题。NP问题不是非P类问题。NP问题是指可以在多项式的时间里验证一个解的问题。之所以要定义NP问题,是因为通常只有NP问题才可能找到多项式的算法。
所有的P类问题都是NP问题。也就是说,能多项式地解决一个问题,必然能多项式地验证一个问题的解。
注:信息学中的号称最困难的问题——“NP问题”,实际上是在探讨NP问题与P类问题的关系。

NP

“NP”的全称为“Nondeterministic Polynomial”,而不是“Non-Polynomial”。NP 类问题指的是,能在多项式时间内检验一个解是否正确的问题。比如我的机器上存有一个密码文件,于是就能在多项式时间内验证另一个字符串文件是否等于这个密码,所以“破译密码”是一个 NP 类问题。NP 类问题也等价为能在多项式时间内猜出一个解的问题。这里的“猜”指的是如果有解,那每次都能在很多种可能的选择中运气极佳地选择正确的一步。
不妨举个例子:给出 n 个城市和两两之间的距离,求找到一个行走方案,使得到达每个城市一次的总路程最短。我们可以这样来“猜测”它的解:先求一个总路程不超过 100 的方案,假设我们可以依靠极好的运气“猜出”一个行走路线,使得总长度确实不超过 100,那么我们只需要每次猜一条路一共猜 n 次。接下来我们再找总长度不超过 50 的方案,找不到就将阈值提高到75…… 假设最后找到了总长度为 90 的方案,而找不到总长度小于 90 的方案。我们最终便在多项式时间内“猜”到了这个旅行商问题的解是一个长度为 90 的路线。它是一个 NP 类的问题

NPC

同时满足下面两个条件的问题就是NPC问题。首先,它得是一个NP问题;然后,所有的NP问题都可以约化到它。证明一个问题是 NPC问题也很简单。先证明它至少是一个NP问题,再证明其中一个已知的NPC问题能约化到它(由约化的传递性,则NPC问题定义的第二条也得以满足;至于第一个NPC问题是怎么来的,下文将介绍),这样就可以说它是NPC问题了。
既然所有的NP问题都能约化成NPC问题,那么只要任意一个NPC问题找到了一个多项式的算法,那么所有的NP问题都能用这个算法解决了,NP也就等于P 了。因此,给NPC找一个多项式算法太不可思议了。因此,前文才说,“正是NPC问题的存在,使人们相信P≠NP”。我们可以就此直观地理解,NPC问题目前没有多项式的有效算法,只能用指数级甚至阶乘级复杂度的搜索。

约化

约化(Reducibility,有的资料上叫“归约”。一个问题A可以约化为问题B的含义即是,可以用问题B的解法解决问题A,或者说,问题A可以“变成”问题B。《算法导论》上举了这么一个例子。比如说,现在有两个问题:求解一个一元一次方程和求解一个一元二次方程。那么我们说,前者可以约化为后者,意即知道如何解一个一元二次方程那么一定能解出一元一次方程。我们可以写出两个程序分别对应两个问题,那么我们能找到一个“规则”,按照这个规则把解一元一次方程程序的输入数据变一下,用在解一元二次方程的程序上,两个程序总能得到一样的结果。这个规则即是:两个方程的对应项系数不变,一元二次方程的二次项系数为0。按照这个规则把前一个问题转换成后一个问题,两个问题就等价了。同样地,我们可以说,Hamilton回路可以约化为TSP问题(Travelling Salesman Problem,旅行商问题):在Hamilton回路问题中,两点相连即这两点距离为0,两点不直接相连则令其距离为1,于是问题转化为在TSP问题中,是否存在一条长为0的路径。Hamilton回路存在当且仅当TSP问题中存在长为0的回路。
“问题A可约化为问题B”有一个重要的直观意义:B的时间复杂度高于或者等于A的时间复杂度。也就是说,问题A不比问题B难。这很容易理解。既然问题A能用问题B来解决,倘若B的时间复杂度比A的时间复杂度还低了,那A的算法就可以改进为B的算法,两者的时间复杂度还是相同。正如解一元二次方程比解一元一次方程难,因为解决前者的方法可以用来解决后者。
很显然,约化具有一项重要的性质:约化具有传递性。如果问题A可约化为问题B,问题B可约化为问题C,则问题A一定可约化为问题C。这个道理非常简单,就不必阐述了。
现在再来说一下约化的标准概念就不难理解了:如果能找到这样一个变化法则,对任意一个程序A的输入,都能按这个法则变换成程序B的输入,使两程序的输出相同,那么我们说,问题A可约化为问题B。
当然,我们所说的“可约化”是指的可“多项式地”约化(Polynomial-time Reducible),即变换输入的方法是能在多项式的时间里完成的。约化的过程只有用多项式的时间完成才有意义。
好了,从约化的定义中我们看到,一个问题约化为另一个问题,时间复杂度增加了,问题的应用范围也增大了。通过对某些问题的不断约化,我们能够不断寻找复杂度更高,但应用范围更广的算法来代替复杂度虽然低,但只能用于很小的一类问题的算法。再回想前面讲的P和NP问题,联想起约化的传递性,自然地,我们会想问,如果不断地约化上去,不断找到能“通吃”若干小NP问题的一个稍复杂的大NP问题,那么最后是否有可能找到一个时间复杂度最高,并且能“通吃”所有的NP问题的这样一个超级NP问题?答案居然是肯定的。也就是说,存在这样一个NP问题,所有的NP问题都可以约化成它。换句话说,只要解决了这个问题,那么所有的NP问题都解决了。这种问题的存在难以置信,并且更加不可思议的是,这种问题不只一个,它有很多个,它是一类问题。这一类问题就是传说中的NPC问题,也就是NP-完全问题。NPC问题的出现使整个NP问题的研究得到了飞跃式的发展。我们有理由相信,NPC问题是最复杂的问题。再次回到全文开头,我们可以看到,人们想表达一个问题不存在多项式的高效算法时应该说它“属于NPC问题”。此时,我的目的终于达到了,我已经把NP问题和NPC问题区别开了。到此为止,本文已经写了近5000字了,我佩服你还能看到这里来,同时也佩服一下自己能写到这里来。
NPC问题的定义非常简单。同时满足下面两个条件的问题就是NPC问题。首先,它得是一个NP问题;然后,所有的NP问题都可以约化到它。证明一个问题是NPC问题也很简单。先证明它至少是一个NP问题,再证明其中一个已知的NPC问题能约化到它(由约化的传递性,则NPC问题定义的第二条也得以满足;至于第一个NPC问题是怎么来的,下文将介绍),这样就可以说它是NPC问题了。
既然所有的NP问题都能约化成NPC问题,那么只要任意一个NPC问题找到了一个多项式的算法,那么所有的NP问题都能用这个算法解决了,NP也就等于P了。因此,给NPC找一个多项式算法太不可思议了。因此,前文才说,“正是NPC问题的存在,使人们相信P≠NP”。我们可以就此直观地理解,NPC问题目前没有多项式的有效算法,只能用指数级甚至阶乘级复杂度的搜索。

其他问题

顺便讲一下NP-Hard问题。NP-Hard问题是这样一种问题,它满足NPC问题定义的第二条但不一定要满足第一条(就是说,NP-Hard问题要比 NPC问题的范围广)。NP-Hard问题同样难以找到多项式的算法,但它不列入我们的研究范围,因为它不一定是NP问题。即使NPC问题发现了多项式级的算法,NP-Hard问题有可能仍然无法得到多项式级的算法。事实上,由于NP-Hard放宽了限定条件,它将有可能比所有的NPC问题的时间复杂度更高从而更难以解决。

不要以为NPC问题是一纸空谈。NPC问题是存在的。确实有这么一个非常具体的问题属于NPC问题。下文即将介绍它。
下文即将介绍逻辑电路问题。这是第一个NPC问题。其它的NPC问题都是由这个问题约化而来的。因此,逻辑电路问题是NPC类问题的“鼻祖”。
逻辑电路问题是指的这样一个问题:给定一个逻辑电路,问是否存在一种输入使输出为True。
什么叫做逻辑电路呢?一个逻辑电路由若干个输入,一个输出,若干“逻辑门”和密密麻麻的线组成。看下面一例,不需要解释你马上就明白了。

┌───┐
│ 输入1├─→┐ ┌──┐
└───┘ └─→┤ │
│ or ├→─┐
┌───┐ ┌─→┤ │ │ ┌──┐
│ 输入2├─→┤ └──┘ └─→┤ │
&
nbsp;└───┘ │ ┌─→┤AND ├──→输出
└────────┘┌→┤ │
┌───┐ ┌──┐ │ └──┘
│ 输入3├─→┤ NOT├─→────┘
└───┘ └──┘
这是个较简单的逻辑电路,当输入1、输入2、输入3分别为True、True、False或False、True、False时,输出为True。
有输出无论如何都不可能为True的逻辑电路吗?有。下面就是一个简单的例子。
┌───┐
│输入1 ├→─┐ ┌──┐
└───┘ └─→┤ │
│AND ├─→┐
┌─→┤ │ │
│ └──┘ │ ┌──┐
│ └→┤ │
┌───┐ │ │AND ├─→输出
│输入2 ├→─┤ ┌──┐ ┌→┤ │
└───┘ └→┤NOT ├→──┘ └──┘
└──┘
上面这个逻辑电路中,无论输入是什么,输出都是False。我们就说,这个逻辑电路不存在使输出为True的一组输入。
回到上文,给定一个逻辑电路,问是否存在一种输入使输出为True,这即逻辑电路问题。
逻辑电路问题属于NPC问题。这是有严格证明的。它显然属于NP问题,并且可以直接证明所有的NP问题都可以约化到它(不要以为NP问题有无穷多个将给证明造成不可逾越的困难)。证明过程相当复杂,其大概意思是说任意一个NP问题的输入和输出都可以转换成逻辑电路的输入和输出(想想计算机内部也不过是一些 0和1的运算),因此对于一个NP问题来说,问题转化为了求出满足结果为True的一个输入(即一个可行解)。

点赞