spark 使用的时候,总有些需求比较另类吧,比如有球友问过这样一个需求:
浪尖,我想要在driver端获取executor执行task返回的结果,比如task是个规则引擎,
我想知道每条规则命中了几条数据,请问这个怎么做呢?
这个是不是很骚气,也很常见,按理说你输出之后,在mysql里跑条sql就行了,但是这个往往显的比较麻烦。而且有时候,在 driver可能还要用到这些数据呢?具体该怎么做呢?
大部分的想法估计是collect方法,那么用collect如何实现呢?大家自己可以考虑一下,我只能告诉你不简单,不如输出到数据库里,然后driver端写sql分析一下。
还有一种考虑就是使用自定义累加器。这样就可以在executor端将结果累加然后在driver端使用,不过具体实现也是很麻烦。大家也可以自己琢磨一下下~
那么,浪尖就给大家介绍一个比较常用也比较骚的操作吧。
其实,这种操作我们最先想到的应该是count函数,因为他就是将task的返回值返回到driver端,然后进行聚合的。我们可以从idea count函数点击进去,可以看到
def count(): Long = sc.runJob(this, Utils.getIteratorSize _).sum
也即是sparkcontext的runJob方法。
Utils.getIteratorSize _这个方法主要是计算每个iterator的元素个数,也即是每个分区的元素个数,返回值就是元素个数:
/**
* Counts the number of elements of an iterator using a while loop rather than calling
* [[scala.collection.Iterator#size]] because it uses a for loop, which is slightly slower
* in the current version of Scala.
*/
def getIteratorSize[T](iterator: Iterator[T]): Long = {
var count = 0L
while (iterator.hasNext) {
count += 1L
iterator.next()
}
count
}
然后就是runJob返回的是一个数组,每个数组的元素就是我们task执行函数的返回值,然后调用sum就得到我们的统计值了。
那么我们完全可以借助这个思路实现我们开头的目标。浪尖在这里直接上案例了:
import org.apache.spark.{SparkConf, SparkContext, TaskContext}
import org.elasticsearch.hadoop.cfg.ConfigurationOptions
object es2sparkRunJob {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setMaster("local[*]").setAppName(this.getClass.getCanonicalName)
conf.set(ConfigurationOptions.ES_NODES, "127.0.0.1")
conf.set(ConfigurationOptions.ES_PORT, "9200")
conf.set(ConfigurationOptions.ES_NODES_WAN_ONLY, "true")
conf.set(ConfigurationOptions.ES_INDEX_AUTO_CREATE, "true")
conf.set(ConfigurationOptions.ES_NODES_DISCOVERY, "false")
conf.set("es.write.rest.error.handlers", "ignoreConflict")
conf.set("es.write.rest.error.handler.ignoreConflict", "com.jointsky.bigdata.handler.IgnoreConflictsHandler")
val sc = new SparkContext(conf)
import org.elasticsearch.spark._
val rdd = sc.esJsonRDD("posts").repartition(10)
rdd.count()
val func = (itr : Iterator[(String,String)]) => {
var count = 0
itr.foreach(each=>{
count += 1
})
(TaskContext.getPartitionId(),count)
}
val res = sc.runJob(rdd,func)
res.foreach(println)
sc.stop()
}
}
例子中driver端获取的就是每个task处理的数据量。
效率高,而且操作灵活高效~
是不是很骚气~~