MapReduce 基本优化相关参数

MapReduce优化
优化(1)资源相关参数:
以下参数是在自己的 MapReduce 应用程序中配置就可以生效

mapreduce.map.memory.mb: 一个 Map Task 可使用的内存上限(单位:MB),默认为 1024。如果 Map Task 实际使用的资源量超过该值,则会被强制杀死。
mapreduce.reduce.memory.mb: 一个 Reduce Task 可使用的资源上限(单位:MB),默认为 1024。如果 Reduce Task 实际使用的资源量超过该值,则会被强制杀死。
mapreduce.map.cpu.vcores: 每个 Maptask 可用的最多 cpu core 数目, 默认值: 1
mapreduce.reduce.cpu.vcores: 每个 Reducetask 可用最多 cpu core 数目默认值: 1
mapreduce.map.java.opts: Map Task 的 JVM 参数,你可以在此配置默认的 java heap size 等参数, 例如:“-Xmx1024m -verbose:gc -Xloggc:/tmp/@taskid@.gc”
(@taskid@会被 Hadoop 框架自动换为相应的 taskid), 默认值: “”
mapreduce.reduce.java.opts: Reduce Task 的 JVM 参数,你可以在此配置默认的 java heap size 等参数, 例如:“-Xmx1024m -verbose:gc -Xloggc:/tmp/@taskid@.gc”, 默认值: “”
应该在 yarn 启动之前就配置在服务器的配置文件中才能生效

yarn.scheduler.minimum-allocation-mb RM 中每个容器请求的最小配置,以 MB 为单位,默认 1024。
yarn.scheduler.maximum-allocation-mb RM 中每个容器请求的最大分配,以 MB 为单位,默认 8192。
yarn.scheduler.minimum-allocation-vcores 1
yarn.scheduler.maximum-allocation-vcores 32
yarn.nodemanager.resource.memory-mb 表示该节点上YARN可使用的物理内存总量,默认是 8192(MB),注意,如果你的节点内存资源不够 8GB,则需要调减小这个值,而 YARN不会智能的探测节点的物理内存总量。
shuffle 性能优化的关键参数,应在 yarn 启动之前就配置好

mapreduce.task.io.sort.mb 100 shuffle 的环形缓冲区大小,默认 100m
mapreduce.map.sort.spill.percent 0.8 环形缓冲区溢出的阈值,默认 80%

 

 

优化(2)容错相关参数:
mapreduce.map.maxattempts: 每个 Map Task 最大重试次数,一旦重试参数超过该值,则认为 Map Task 运行失败,默认值:4。

mapreduce.reduce.maxattempts: 每个Reduce Task最大重试次数,一旦重试参数超过该值,则认为 Map Task 运行失败,默认值:4。

mapreduce.map.failures.maxpercent: 当失败的 Map Task 失败比例超过该值,整个作业则失败,默认值为 0. 如果你的应用程序允许丢弃部分输入数据,则该该值设为一个大于 0 的值,比如 5,表示如果有低于 5%的 Map Task 失败(如果一个 Map Task 重试次数超过mapreduce.map.maxattempts,则认为这个 Map Task 失败,其对应的输入数据将不会产生任何结果),整个作业扔认为成功。

mapreduce.reduce.failures.maxpercent: 当失败的 Reduce Task 失败比例超过该值为,整个作业则失败,默认值为 0.

mapreduce.task.timeout:如果一个task在一定时间内没有任何进入,即不会读取新的数据,也没有输出数据,则认为该 task 处于 block 状态,可能是临时卡住,也许永远会卡住。为了防止因为用户程序永远 block 不退出,则强制设置了一个超时时间(单位毫秒),默认是600000,值为 0 将禁用超时。

 

 

优化(3)效率跟稳定性参数(任务的推测执行):
Straggle(掉队者)是指那些跑的很慢但最终会成功完成的任务。一个掉队的Map任务会阻止Reduce任务开始执行。

Hadoop不能自动纠正掉队任务,但是可以识别那些跑的比较慢的任务,然后它会产生另一个等效的任务作为备份,并使用首先完成的那个任务的结果,此时另外一个任务则会被要求停止执行。这种技术称为推测执行(speculative execution)。

默认使用推测执行。
属性                                                                                           描述
mapreduce.map.speculative                                                     控制Map任务的推测执行(默认true)
mapreduce.reduce.speculative                                                 控制Reduce任务的推测执行(默认true)
mapreduce.job.speculative.speculativecap                              推测执行功能的任务能够占总任务数量的比例(默认0.1,范围0~1)
mapreduce.job.speculative.slownodethreshold                        判断某个TaskTracker是否适合启动某个task的speculative task(默认1)
mapreduce.job.speculative.slowtaskthreshold                         判断某个task是否可以启动speculative task(默认1)
mapreduce.input.fileinputformat.split.minsize                          FileInputFormat做切片时最小切片大小,默认 1。

mapreduce.input.fileinputformat.split.maxsize                         FileInputFormat做切片时最大切片大小

    原文作者:MapReduce
    原文地址: https://www.cnblogs.com/yjt1993/p/9483032.html
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞