machine learning : 机器学习 deep learning : 深度学习 image processing : 图像处理 natural language processing : 自然语言处理 algorithms : 算法 training data set : 训练数据集 facial detection : 面部识别 malware detection : 恶意程序检测 adversarial sample : 对抗样本 countermeasuring techniques : 防御技术 Indiscriminate Attack:非针对性攻击 Adversary’s goal:敌手目标 Adversary’s knowledge :敌手知识 Adversary’s capability:敌手能力 Attack strategy:攻击策略 Gradient Ascent Strategy:梯度下降策略 Generative Model:生成模型 Discriminative model:判别模型 The Direct Gradient:直接梯度法 Accuracy:准确率 Loss:损失值 White-Box Attack:白盒攻击 Blank-Box Attack:黑盒攻击 Reconstruction Attack:重建攻击 Proactive Defense:主动防御 Reactive Defense:被动防御 Reject On Negative Impact:拒绝消极影响 Stackelberg Games:斯塔克尔伯格博弈 Defensive Distillation:防御精馏 Differential Privacy:差分隐私 Homomorphic Encryption:同态加密 Pattern Recognition:模式识别 RNN, Recurrent Neural Networks:循环神经网络 FNNs(Feed-forward Neural Networks):前向反馈神经网络 Convolutional layer:卷积层 Rectified Linear Units layer,ReLU layer:线性整流层 Pooling layer :池化层 Fully-Connected layer:全连接层 | Face Recognition System :面部识别系统 (FRS) Adversarial Classification : 敌手分类 Adversarial Learning :对抗学习 try-and-error:试错 Causative Attack :诱发型攻击 Security Violation :安全损害 Integrity Attack :完整性攻击 Availability Attack:可用性攻击 Privacy Violation Attack :隐私窃取攻击 Specificity of an Attack :攻击的专一性 Obfuscation Attacks:迷惑攻击 Counterintuitive:反直觉 Poisoning Attack:投毒攻击 Centroid:中心值 Bridge:桥 Spoofing Attack :欺骗攻击 Avoiding Attack:逃避攻击 Impersonate Attack:模仿攻击 The Least Likely Class:最小相似类 Inversion Attack:逆向攻击 Confidence Values:置信值 Equation-Solving Attacks:等式求解攻击 Model Extraction Attacks:模型提取攻击 Arms Race:攻防技术竞赛 Non-stationary:不平稳 Data Sanitization:数据清洗 Randomized Prediction Games:随机预测博弈 Deep Contractive Networks:深度收缩网络 Crowdsourcing:众包 Randomized Response:随机响应 Logistic Regression:逻辑回归 regression analysis:回归分析 |