要将自定义或其他库的函数应用于Pandas对象,有三个重要的方法,下面来讨论如何使用这些方法。使用适当的方法取决于函数是否期望在整个DataFrame
,行或列或元素上进行操作。
- 表合理函数应用:
pipe()
- 行或列函数应用:
apply()
- 元素函数应用:
applymap()
表格函数应用
可以通过将函数和适当数量的参数作为管道参数来执行自定义操作。 因此,对整个DataFrame
执行操作。
例如,为DataFrame
中的所有元素相加一个值2
。
adder 函数
adder
函数将两个数值作为参数相加并返回总和。
def adder(ele1,ele2):
return ele1+ele2
现在将使用自定义函数对DataFrame进行操作。
df = pd.DataFrame(np.random.randn(5,3),columns=['col1','col2','col3'])
df.pipe(adder,2)
下面来看看完整的程序 –
import pandas as pd
import numpy as np
def adder(ele1,ele2):
return ele1+ele2
df = pd.DataFrame(np.random.randn(5,3),columns=['col1','col2','col3'])
df.pipe(adder,2)
print df
执行上面示例代码,得到以下结果 –
col1 col2 col3
0 2.176704 2.219691 1.509360
1 2.222378 2.422167 3.953921
2 2.241096 1.135424 2.696432
3 2.355763 0.376672 1.182570
4 2.308743 2.714767 2.130288
行或列合理函数应用
可以使用apply()
方法沿DataFrame
或Panel
的轴应用任意函数,它与描述性统计方法一样,采用可选的axis
参数。 默认情况下,操作按列执行,将每列列为数组。
示例
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(5,3),columns=['col1','col2','col3'])
df.apply(np.mean)
print df
执行上面示例代码,得到以下结果 –
col1 col2 col3
0 0.343569 -1.013287 1.131245
1 0.508922 -0.949778 -1.600569
2 -1.182331 -0.420703 -1.725400
3 0.860265 2.069038 -0.537648
4 0.876758 -0.238051 0.473992
通过传递axis
参数,可以在行上执行操作。
示例-2
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(5,3),columns=['col1','col2','col3'])
df.apply(np.mean,axis=1)
print df
执行上面示例代码,得到以下结果 –
col1 col2 col3
0 0.543255 -1.613418 -0.500731
1 0.976543 -1.135835 -0.719153
2 0.184282 -0.721153 -2.876206
3 0.447738 0.268062 -1.937888
4 -0.677673 0.177455 1.397360
示例-3
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(5,3),columns=['col1','col2','col3'])
df.apply(lambda x: x.max() - x.min())
print df
执行上面示例代码,得到以下结果 –
col1 col2 col3
0 -0.585206 -0.104938 1.424115
1 -0.326036 -1.444798 0.196849
2 -2.033478 1.682253 1.223152
3 -0.107015 0.499846 0.084127
4 -1.046964 -1.935617 -0.009919
元素合理函数应用
并不是所有的函数都可以向量化(也不是返回另一个数组的NumPy
数组,也不是任何值),在DataFrame
上的方法applymap()
和类似于在Series上的map()
接受任何Python函数,并且返回单个值。
示例-1
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(5,3),columns=['col1','col2','col3'])
# My custom function
df['col1'].map(lambda x:x*100)
print df
执行上面示例代码,得到以下结果 –
col1 col2 col3
0 0.629348 0.088467 -1.790702
1 -0.592595 0.184113 -1.524998
2 -0.419298 0.262369 -0.178849
3 -1.036930 1.103169 0.941882
4 -0.573333 -0.031056 0.315590
示例-2
import pandas as pd
import numpy as np
# My custom function
df = pd.DataFrame(np.random.randn(5,3),columns=['col1','col2','col3'])
df.applymap(lambda x:x*100)
print df
执行上面示例代码,得到以下结果 –
output is as follows:
col1 col2 col3
0 17.670426 21.969052 -49.064031
1 22.237846 42.216693 195.392124
2 24.109576 -86.457646 69.643171
3 35.576312 -162.332803 -81.743023
4 30.874333 71.476717 13.028751