朴素的bellman-ford算法,直接见代码:
/*
* About: Bellman-Ford算法
* Author: Tanky Woo
* Blog: www.WuTianqi.com
*/
#include <iostream>
using namespace std;
const int maxnum = 100;
const int maxint = 99999;
// 边,
typedef struct Edge{
int u, v; // 起点,重点
int weight; // 边的权值
}Edge;
Edge edge[maxnum]; // 保存边的值
int dist[maxnum]; // 结点到源点最小距离
int nodenum, edgenum, source; // 结点数,边数,源点
// 初始化图
void init()
{
// 输入结点数,边数,源点
cin >> nodenum >> edgenum >> source;
for(int i=1; i<=nodenum; ++i)
dist[i] = maxint;
dist[source] = 0;
for(int i=1; i<=edgenum; ++i)
{
cin >> edge[i].u >> edge[i].v >> edge[i].weight;
if(edge[i].u == source) //注意这里设置初始情况
dist[edge[i].v] = edge[i].weight;
}
}
// 松弛计算
void relax(int u, int v, int weight)
{
if(dist[v] > dist[u] + weight)
dist[v] = dist[u] + weight;
}
bool Bellman_Ford()
{
for(int i=1; i<=nodenum-1; ++i)
for(int j=1; j<=edgenum; ++j)
relax(edge[j].u, edge[j].v, edge[j].weight);
bool flag = 1;
// 判断是否有负环路
for(int i=1; i<=edgenum; ++i)
if(dist[edge[i].v] > dist[edge[i].u] + edge[i].weight)
{
flag = 0;
break;
}
return flag;
}
int main()
{
//freopen("input3.txt", "r", stdin);
init();
if(Bellman_Ford())
for(int i = 1 ;i <= nodenum; i++)
cout << dist[i] << endl;
return 0;
}
队列优化的(spfa算法)l邻接表实现:
用队列记录修改了距离的点,u->v,枚举u的所有边,如果松弛了点v,并且v不在队列中,加入队列,如果没有负劝边,那么必然会在一段操作后,队列为空,则停止;
如果有负劝边那么不会停止,所以要判断是否有负劝边,方法是当一个点进入队列的次数超过n(顶点数),则说明有负劝边,代码如下
#include<iostream>
#include<cstdio>
#include<vector>
#include<cstring>
#include<queue>
using namespace std;
const int MAXN=100;
int inf=1<<30;
vector<int> map[MAXN]; //图的邻接表
vector<int> w[MAXN];//每条边的权值,如果是稀疏图则这样存储,否则可以直接用map[x][y]
int count[MAXN];//判断负环,记录进入队列的次数,如果超过n次就一定有负环
int main(){
//n为顶点数,m为边数
int n,m,x,y,z;
int dis[MAXN]={0};
bool inqueue[MAXN]={0};
memset(count,0,sizeof(count));
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++)
dis[i]=inf;
dis[1]=0;
for (int i=0;i<m;i++){
scanf("%d%d%d",&x,&y,&z);
map[x].push_back(y);
w[x].push_back(z);//记录权值
}
queue<int> q;
q.push(1);
inqueue[1]=1;
count[1]++;
int v,u,t;
bool flag=1;
while(!q.empty()&&flag){
u=q.front();
q.pop();
inqueue[u]=0;
for (int i=0;i<map[u].size();i++){
v=map[u][i];
t=w[u][i];
if (dis[v]>dis[u]+t){
dis[v]=dis[u]+t;
if (!inqueue[v]){
q.push(v);
inqueue[v]=1;
count[v]++;
if (count[v]>n) flag=0;
}
}
}
for (int i=1;i<=n;i++) printf("%d ",dis[i]);
printf("\n");
}
if (flag==0) printf("false!\n");
}