//Bellman_Ford算法(可判断有无权为负的回路)
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <map>
#define maxn 1005
#define inf 0x3f3f3f3f
using namespace std;
map<int, int>mp;
int dist[maxn];
int pre[maxn];
struct Edge
{
int u, v, cost;
}edge[maxn];
int Bellman_Ford(int nodenum, int edgenum, int orig)
{
for(int i=1; i<=nodenum; i++)
dist[i] = i==orig?0:inf;
pre[orig] = orig;
for(int i=1; i<nodenum; i++)
for(int j=1; j<=edgenum; j++)
{
if(dist[edge[j].v]>dist[edge[j].u] + edge[j].cost)
{
dist[edge[j].v] = dist[edge[j].u] + edge[j].cost;
pre[edge[j].v] = edge[j].u;
}
}
int res = 1;
for(int j=1; j<=edgenum; j++)
{
if(dist[edge[j].v]>dist[edge[j].u] + edge[j].cost)
{
res = 0;
break;
}
}
return res;
}
//反向输出路径
void f_path(int root)
{
while(root!=pre[root])
{
printf("%d, ", root);
root = pre[root];
}
if(root==pre[root])
printf(", %d", root);
}
//正向输出路径
void z_path(int root)
{
int path[maxn];
int k = 0;
while(root!=pre[root])
{
path[k++] = root;
root = pre[root];
}
path[k++] = root;
for(int i=0; i<k; i++)
printf("%d, ",path[k-i-1]);
printf("\n\n");
}
int main()
{
int nodenum, edgenum, orig;
while(scanf("%d%d%d", &nodenum, &edgenum, &orig)!=EOF)
{
//无向图,可重边,点u->v的权值存在mp[u*maxn+v]中, 结构体edge中的cost可去掉
/*mp.clear();
int k=0;
for(int i=1; i<=edgenum; i++)
{
int u, v, cost;
scanf("%d%d%d", &u, &v, &cost);
if(mp[u*maxn+v])
{
mp[v*maxn+u] = mp[u*maxn+v] = min(mp[u*maxn + v], cost);
}
else
{
edge[k++].u = u;
edge[k-1].v = v;
edge[k++].u = v;
edge[k-1].v = u;
mp[v*maxn+u] = mp[u*maxn+v] = cost;
}
}
*/
//有向图,且没有重边
for(int i=1; i<=edgenum; i++)
scanf("%d%d%d", &edge[i].u, &edge[i].v, &edge[i].cost);
if(Bellman_Ford(nodenum, edgenum, orig))
{
for(int i=1; i<=nodenum; i++)
{
printf("%d->%d的最短路长度:%d\n", orig, i, dist[i]);
printf("反向路径是:");
f_path(i);
printf("\n正向路径是:");
z_path(i);
}
}
else
printf("存在负环\n");
}
return 0;
}
最短路径算法—Bellman-Ford模板
原文作者:Bellman - ford算法
原文地址: https://blog.csdn.net/qq_31281327/article/details/75417328
本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
原文地址: https://blog.csdn.net/qq_31281327/article/details/75417328
本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。