HDU 3790--最短路问题(Bellman_Ford)

最短路径问题

Problem Description 给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。  

Input 输入n,m,点的编号是1~n,然后是m行,每行4个数 a,b,d,p,表示a和b之间有一条边,且其长度为d,花费为p。最后一行是两个数 s,t;起点s,终点。n和m为0时输入结束。

(1<n<=1000, 0<m<100000, s != t)  

Output 输出 一行有两个数, 最短距离及其花费。  

Sample Input

3 2 1 2 5 6 2 3 4 5 1 3 0 0  

Sample Output

9 11

第一次做的时候在边进行松弛的时候就进行了花费的相加。。。。

 


#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
using namespace std;

const int inf = 1000000;
struct node
{
    int u,v,w,p;
} p[inf];
int dis [inf],money[inf];

int Bellman_Ford (int n,int m,int s,int t,int k)
{
    int flag,ans=0,pos;
    for (int i = 0 ; i <=n; i++)
    {
        dis[i] = inf;
        money[i] = 0;
    }
    dis[s] = 0;
    money[s]=0;
    for (int i = 0; i < n; i++ )
    {
        flag=0;
        for (int j = 0; j < k ; j++)
        {
            if (dis[p[j].v] > dis[p[j].u]+p[j].w)
            {
                flag=1;
                dis[p[j].v] = dis[p[j].u] + p[j].w;
                money[p[j].v] = money[p[j].u] + p[j].p;
            }
            else if (dis[p[j].v] == dis[p[j].u]+p[j].w)
            {
                money[p[j].v] = money[p[j].v] < money[p[j].u] + p[j].p ? money[p[j].v] : money[p[j].u] + p[j].p;
            }
        }

        if (flag == 0)
            break;
    }
    for (int j = 1; j < k ; j++)
    {
        if (dis[p[j].v] > dis[p[j].u]+p[j].w)
            return 0;
    }
    printf ("%d %d\n", dis[t],money[t]);
    return 0;
}


int main()
{

    int n,m,s,t,k;
    int a,b,c,d;
    while (~scanf ("%d%d",&n,&m) && n && m)
    {
        k=0;
        for (int i= 0; i < m ; i++)
        {
            scanf ("%d%d%d%d",&a,&b,&c,&d);
            p[k].u=a;
            p[k].v=b;
            p[k].w=c;
            p[k++].p=d;
            p[k].u=b;
            p[k].v=a;
            p[k].w=c;
            p[k++].p=d;
        }
        scanf ("%d%d",&s,&t);
        Bellman_Ford(n,m,s,t,k);
    }

    return 0;
}

    原文作者:Bellman - ford算法
    原文地址: https://blog.csdn.net/u013476556/article/details/38305409
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞