所谓单源最短路径(Single-Source-Shortest-Path)问题,就是求解从某个节点出发,到其他节点的最短距离。
求解该问题的常用算法有Bellman-Ford和Dijkstra,前者适用于一般情况如负权值边,后者适用于非负权值边。
参考《算法导论》第24章-单源最短路径的方法:
1.设置数组d存储每个节点到源节点的距离,维护一个提取最小d值的优先队列Q,Q初始化时是G的所有节点的集合
2.每次while循环取出Q中d最小节点u,添加到节点集合S,遍历当前节点u的邻居节点v,用所谓的松弛技术(Relax)更新邻居节点v的d取值(会影响下一个Q出列的节点)
3.直到Q队列为空,结束
伪代码:
Dijkstra(G, s)
S = [ ]
Q = [G]
while Q:
u = extract_min_queue(Q)
S.append(u)
for each v in Adjacent[u]:
Relax(G, d, u, v)
return d
Relax(d, u, v)
if d[v] > d[u] + G[u][v]:
d[v] = d[u] + G[u][v]
parent[v] = u
实现代码:
class Dijkstra(object):
""" Single Source Shortest Path G: Adajcent Matrix, s: The index of source node """
def __init__(self, G, s):
self.numVertex = len(G)
self.G = G # adjacent matrix, G[u][v]: weight of u -> v
self.Q = range(self.numVertex) # queue for vertex, pop for each loop
self.D = {} # distance between source and each vertex, update by relax
self.parent = {} # store the shortest path
for i in xrange(self.numVertex):
self.D[i] = 2**32 - 1
self.parent[i] = 'null'
self.D[s] = 0 # source distance
def extract_min_queue(self):
""" extract min{D} under current vertex in Q """
min_dist = 2**32 - 1
min_index = None
for vertex in self.Q:
if self.D[vertex] < min_dist:
min_dist = self.D[vertex]
min_index = vertex
self.Q.remove(min_index)
return min_index
def relax(self, u, v):
""" update D of each vertex """
if self.D[v] > self.D[u] + self.G[u][v]:
self.D[v] = self.D[u] + self.G[u][v]
self.parent[v] = u
def run(self):
while(self.Q):
u = self.extract_min_queue() # Q.remove(u)
for v in xrange(self.numVertex):
if G[u][v] == 0: # v is not adjacent by u
continue
self.relax(u, v)
print 'distance:', self.D
print 'parent:', self.parent
if __name__ == '__main__':
G = [[0, 10, 0, 5, 0],
[0, 0, 1, 2, 0],
[0, 0, 0, 0, 4],
[0, 3, 9, 0, 2],
[7, 0, 6, 0, 0]]
test = Dijkstra(G, 0)
test.run()
当图的每条边权值相同,即为无权图时,单源最短路径问题等价于BFS,从源点到各顶点的最小深度即最短路径。此时优先队列退化为BFS的队列,Dijkstra算法退化为BFS。