/**
* C++: Dijkstra算法获取最短路径(邻接表)
*
* @author judyge
* @date 2014/04/24
*/
#include <iomanip>
#include <iostream>
#include <vector>
using namespace std;
// 示例类:边的结构体(用来演示)
class EData
{
public:
char start; // 边的起点
char end; // 边的终点
int weight; // 边的权重
public:
EData(){}
EData(char s, char e, int w):start(s),end(e),weight(w){}
};
// 邻接表
class ListUDG
{
#define MAX 100
#define INF (~(0x1<<31)) // 最大值(即0X7FFFFFFF)
private: // 内部类
// 邻接表中表对应的链表的顶点
class ENode
{
int ivex; // 该边所指向的顶点的位置
int weight; // 该边的权
ENode *nextEdge; // 指向下一条弧的指针
friend class ListUDG;
};
// 邻接表中表的顶点
class VNode
{
char data; // 顶点信息
ENode *firstEdge; // 指向第一条依附该顶点的弧
friend class ListUDG;
};
private: // 私有成员
int mVexNum; // 图的顶点的数目
int mEdgNum; // 图的边的数目
VNode mVexs[MAX];
public:
// 创建邻接表对应的图(自己输入)
ListUDG();
// 创建邻接表对应的图(用已提供的数据)
ListUDG(char vexs[], int vlen, EData *edges[], int elen);
~ListUDG();
// 深度优先搜索遍历图
void DFS();
// 广度优先搜索(类似于树的层次遍历)
void BFS();
// 打印邻接表图
void print();
// prim最小生成树
void prim(int start);
// 克鲁斯卡尔(Kruskal)最小生成树
void kruskal();
// Dijkstra最短路径
void dijkstra(int vs, int vexs[], int dist[]);
private:
// 读取一个输入字符
char readChar();
// 返回ch的位置
int getPosition(char ch);
// 深度优先搜索遍历图的递归实现
void DFS(int i, int *visited);
// 将node节点链接到list的最后
void linkLast(ENode *list, ENode *node);
// 获取边<start, end>的权值;若start和end不是连通的,则返回无穷大。
int getWeight(int start, int end);
// 获取图中的边
EData* getEdges();
// 对边按照权值大小进行排序(由小到大)
void sortEdges(EData* edges, int elen);
// 获取i的终点
int getEnd(int vends[], int i);
};
/*
* 创建邻接表对应的图(自己输入)
*/
ListUDG::ListUDG()
{
char c1, c2;
int v, e;
int i, p1, p2;
int weight;
ENode *node1, *node2;
// 输入"顶点数"和"边数"
cout << "input vertex number: ";
cin >> mVexNum;
cout << "input edge number: ";
cin >> mEdgNum;
if ( mVexNum < 1 || mEdgNum < 1 || (mEdgNum > (mVexNum * (mVexNum-1))))
{
cout << "input error: invalid parameters!" << endl;
return ;
}
// 初始化"邻接表"的顶点
for(i=0; i<mVexNum; i++)
{
cout << "vertex(" << i << "): ";
mVexs[i].data = readChar();
mVexs[i].firstEdge = NULL;
}
// 初始化"邻接表"的边
for(i=0; i<mEdgNum; i++)
{
// 读取边的起始顶点和结束顶点
cout << "edge(" << i << "): ";
c1 = readChar();
c2 = readChar();
cin >> weight;
p1 = getPosition(c1);
p2 = getPosition(c2);
// 初始化node1
node1 = new ENode();
node1->ivex = p2;
node1->weight = weight;
// 将node1链接到"p1所在链表的末尾"
if(mVexs[p1].firstEdge == NULL)
mVexs[p1].firstEdge = node1;
else
linkLast(mVexs[p1].firstEdge, node1);
// 初始化node2
node2 = new ENode();
node2->ivex = p1;
node2->weight = weight;
// 将node2链接到"p2所在链表的末尾"
if(mVexs[p2].firstEdge == NULL)
mVexs[p2].firstEdge = node2;
else
linkLast(mVexs[p2].firstEdge, node2);
}
}
/*
* 创建邻接表对应的图(用已提供的数据)
*/
ListUDG::ListUDG(char vexs[], int vlen, EData *edges[], int elen)
{
char c1, c2;
int i, p1, p2;
int weight;
ENode *node1, *node2;
// 初始化"顶点数"和"边数"
mVexNum = vlen;
mEdgNum = elen;
// 初始化"邻接表"的顶点
for(i=0; i<mVexNum; i++)
{
mVexs[i].data = vexs[i];
mVexs[i].firstEdge = NULL;
}
// 初始化"邻接表"的边
for(i=0; i<mEdgNum; i++)
{
// 读取边的起始顶点和结束顶点
c1 = edges[i]->start;
c2 = edges[i]->end;
weight = edges[i]->weight;
p1 = getPosition(c1);
p2 = getPosition(c2);
// 初始化node1
node1 = new ENode();
node1->ivex = p2;
node1->weight = weight;
// 将node1链接到"p1所在链表的末尾"
if(mVexs[p1].firstEdge == NULL)
mVexs[p1].firstEdge = node1;
else
linkLast(mVexs[p1].firstEdge, node1);
// 初始化node2
node2 = new ENode();
node2->ivex = p1;
node2->weight = weight;
// 将node2链接到"p2所在链表的末尾"
if(mVexs[p2].firstEdge == NULL)
mVexs[p2].firstEdge = node2;
else
linkLast(mVexs[p2].firstEdge, node2);
}
}
/*
* 析构函数
*/
ListUDG::~ListUDG()
{
}
/*
* 将node节点链接到list的最后
*/
void ListUDG::linkLast(ENode *list, ENode *node)
{
ENode *p = list;
while(p->nextEdge)
p = p->nextEdge;
p->nextEdge = node;
}
/*
* 返回ch的位置
*/
int ListUDG::getPosition(char ch)
{
int i;
for(i=0; i<mVexNum; i++)
if(mVexs[i].data==ch)
return i;
return -1;
}
/*
* 读取一个输入字符
*/
char ListUDG::readChar()
{
char ch;
do {
cin >> ch;
} while(!((ch>='a'&&ch<='z') || (ch>='A'&&ch<='Z')));
return ch;
}
/*
* 深度优先搜索遍历图的递归实现
*/
void ListUDG::DFS(int i, int *visited)
{
ENode *node;
visited[i] = 1;
cout << mVexs[i].data << " ";
node = mVexs[i].firstEdge;
while (node != NULL)
{
if (!visited[node->ivex])
DFS(node->ivex, visited);
node = node->nextEdge;
}
}
/*
* 深度优先搜索遍历图
*/
void ListUDG::DFS()
{
int i;
int visited[MAX]; // 顶点访问标记
// 初始化所有顶点都没有被访问
for (i = 0; i < mVexNum; i++)
visited[i] = 0;
cout << "DFS: ";
for (i = 0; i < mVexNum; i++)
{
if (!visited[i])
DFS(i, visited);
}
cout << endl;
}
/*
* 广度优先搜索(类似于树的层次遍历)
*/
void ListUDG::BFS()
{
int head = 0;
int rear = 0;
int queue[MAX]; // 辅组队列
int visited[MAX]; // 顶点访问标记
int i, j, k;
ENode *node;
for (i = 0; i < mVexNum; i++)
visited[i] = 0;
cout << "BFS: ";
for (i = 0; i < mVexNum; i++)
{
if (!visited[i])
{
visited[i] = 1;
cout << mVexs[i].data << " ";
queue[rear++] = i; // 入队列
}
while (head != rear)
{
j = queue[head++]; // 出队列
node = mVexs[j].firstEdge;
while (node != NULL)
{
k = node->ivex;
if (!visited[k])
{
visited[k] = 1;
cout << mVexs[k].data << " ";
queue[rear++] = k;
}
node = node->nextEdge;
}
}
}
cout << endl;
}
/*
* 打印邻接表图
*/
void ListUDG::print()
{
int i,j;
ENode *node;
cout << "List Graph:" << endl;
for (i = 0; i < mVexNum; i++)
{
cout << i << "(" << mVexs[i].data << "): ";
node = mVexs[i].firstEdge;
while (node != NULL)
{
cout << node->ivex << "(" << mVexs[node->ivex].data << ") ";
node = node->nextEdge;
}
cout << endl;
}
}
/*
* 获取边<start, end>的权值;若start和end不是连通的,则返回无穷大。
*/
int ListUDG::getWeight(int start, int end)
{
ENode *node;
if (start==end)
return 0;
node = mVexs[start].firstEdge;
while (node!=NULL)
{
if (end==node->ivex)
return node->weight;
node = node->nextEdge;
}
return INF;
}
/*
* prim最小生成树
*
* 参数说明:
* start -- 从图中的第start个元素开始,生成最小树
*/
void ListUDG::prim(int start)
{
int min,i,j,k,m,n,tmp,sum;
int index=0; // prim最小树的索引,即prims数组的索引
char prims[MAX]; // prim最小树的结果数组
int weights[MAX]; // 顶点间边的权值
// prim最小生成树中第一个数是"图中第start个顶点",因为是从start开始的。
prims[index++] = mVexs[start].data;
// 初始化"顶点的权值数组",
// 将每个顶点的权值初始化为"第start个顶点"到"该顶点"的权值。
for (i = 0; i < mVexNum; i++ )
weights[i] = getWeight(start, i);
for (i = 0; i < mVexNum; i++)
{
// 由于从start开始的,因此不需要再对第start个顶点进行处理。
if(start == i)
continue;
j = 0;
k = 0;
min = INF;
// 在未被加入到最小生成树的顶点中,找出权值最小的顶点。
while (j < mVexNum)
{
// 若weights[j]=0,意味着"第j个节点已经被排序过"(或者说已经加入了最小生成树中)。
if (weights[j] != 0 && weights[j] < min)
{
min = weights[j];
k = j;
}
j++;
}
// 经过上面的处理后,在未被加入到最小生成树的顶点中,权值最小的顶点是第k个顶点。
// 将第k个顶点加入到最小生成树的结果数组中
prims[index++] = mVexs[k].data;
// 将"第k个顶点的权值"标记为0,意味着第k个顶点已经排序过了(或者说已经加入了最小树结果中)。
weights[k] = 0;
// 当第k个顶点被加入到最小生成树的结果数组中之后,更新其它顶点的权值。
for (j = 0 ; j < mVexNum; j++)
{
// 获取第k个顶点到第j个顶点的权值
tmp = getWeight(k, j);
// 当第j个节点没有被处理,并且需要更新时才被更新。
if (weights[j] != 0 && tmp < weights[j])
weights[j] = tmp;
}
}
// 计算最小生成树的权值
sum = 0;
for (i = 1; i < index; i++)
{
min = INF;
// 获取prims[i]在矩阵表中的位置
n = getPosition(prims[i]);
// 在vexs[0...i]中,找出到j的权值最小的顶点。
for (j = 0; j < i; j++)
{
m = getPosition(prims[j]);
tmp = getWeight(m, n);
if (tmp < min)
min = tmp;
}
sum += min;
}
// 打印最小生成树
cout << "PRIM(" << mVexs[start].data <<")=" << sum << ": ";
for (i = 0; i < index; i++)
cout << prims[i] << " ";
cout << endl;
}
/*
* 获取图中的边
*/
EData* ListUDG::getEdges()
{
int i,j;
int index=0;
ENode *node;
EData *edges;
edges = new EData[mEdgNum];
for (i=0; i < mVexNum; i++)
{
node = mVexs[i].firstEdge;
while (node != NULL)
{
if (node->ivex > i)
{
edges[index].start = mVexs[i].data; // 起点
edges[index].end = mVexs[node->ivex].data; // 终点
edges[index].weight = node->weight; // 权
index++;
}
node = node->nextEdge;
}
}
return edges;
}
/*
* 对边按照权值大小进行排序(由小到大)
*/
void ListUDG::sortEdges(EData* edges, int elen)
{
int i,j;
for (i=0; i<elen; i++)
{
for (j=i+1; j<elen; j++)
{
if (edges[i].weight > edges[j].weight)
{
// 交换"边i"和"边j"
swap(edges[i], edges[j]);
}
}
}
}
/*
* 获取i的终点
*/
int ListUDG::getEnd(int vends[], int i)
{
while (vends[i] != 0)
i = vends[i];
return i;
}
/*
* 克鲁斯卡尔(Kruskal)最小生成树
*/
void ListUDG::kruskal()
{
int i,m,n,p1,p2;
int length;
int index = 0; // rets数组的索引
int vends[MAX]={0}; // 用于保存"已有最小生成树"中每个顶点在该最小树中的终点。
EData rets[MAX]; // 结果数组,保存kruskal最小生成树的边
EData *edges; // 图对应的所有边
// 获取"图中所有的边"
edges = getEdges();
// 将边按照"权"的大小进行排序(从小到大)
sortEdges(edges, mEdgNum);
for (i=0; i<mEdgNum; i++)
{
p1 = getPosition(edges[i].start); // 获取第i条边的"起点"的序号
p2 = getPosition(edges[i].end); // 获取第i条边的"终点"的序号
m = getEnd(vends, p1); // 获取p1在"已有的最小生成树"中的终点
n = getEnd(vends, p2); // 获取p2在"已有的最小生成树"中的终点
// 如果m!=n,意味着"边i"与"已经添加到最小生成树中的顶点"没有形成环路
if (m != n)
{
vends[m] = n; // 设置m在"已有的最小生成树"中的终点为n
rets[index++] = edges[i]; // 保存结果
}
}
delete[] edges;
// 统计并打印"kruskal最小生成树"的信息
length = 0;
for (i = 0; i < index; i++)
length += rets[i].weight;
cout << "Kruskal=" << length << ": ";
for (i = 0; i < index; i++)
cout << "(" << rets[i].start << "," << rets[i].end << ") ";
cout << endl;
}
/*
* Dijkstra最短路径。
* 即,统计图中"顶点vs"到其它各个顶点的最短路径。
*
* 参数说明:
* vs -- 起始顶点(start vertex)。即计算"顶点vs"到其它顶点的最短路径。
* prev -- 前驱顶点数组。即,prev[i]的值是"顶点vs"到"顶点i"的最短路径所经历的全部顶点中,位于"顶点i"之前的那个顶点。
* dist -- 长度数组。即,dist[i]是"顶点vs"到"顶点i"的最短路径的长度。
*/
void ListUDG::dijkstra(int vs, int prev[], int dist[])
{
int i,j,k;
int min;
int tmp;
int flag[MAX]; // flag[i]=1表示"顶点vs"到"顶点i"的最短路径已成功获取。
// 初始化
for (i = 0; i < mVexNum; i++)
{
flag[i] = 0; // 顶点i的最短路径还没获取到。
prev[i] = 0; // 顶点i的前驱顶点为0。
dist[i] = getWeight(vs, i); // 顶点i的最短路径为"顶点vs"到"顶点i"的权。
}
// 对"顶点vs"自身进行初始化
flag[vs] = 1;
dist[vs] = 0;
// 遍历mVexNum-1次;每次找出一个顶点的最短路径。
for (i = 1; i < mVexNum; i++)
{
// 寻找当前最小的路径;
// 即,在未获取最短路径的顶点中,找到离vs最近的顶点(k)。
min = INF;
for (j = 0; j < mVexNum; j++)
{
if (flag[j]==0 && dist[j]<min)
{
min = dist[j];
k = j;
}
}
// 标记"顶点k"为已经获取到最短路径
flag[k] = 1;
// 修正当前最短路径和前驱顶点
// 即,当已经"顶点k的最短路径"之后,更新"未获取最短路径的顶点的最短路径和前驱顶点"。
for (j = 0; j < mVexNum; j++)
{
tmp = getWeight(k, j);
tmp = (tmp==INF ? INF : (min + tmp)); // 防止溢出
if (flag[j] == 0 && (tmp < dist[j]) )
{
dist[j] = tmp;
prev[j] = k;
}
}
}
// 打印dijkstra最短路径的结果
cout << "dijkstra(" << mVexs[vs].data << "): " << endl;
for (i = 0; i < mVexNum; i++)
cout << " shortest(" << mVexs[vs].data << ", " << mVexs[i].data << ")=" << dist[i] << endl;
}
int main()
{
int prev[MAX] = {0};
int dist[MAX] = {0};
// 顶点
char vexs[] = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
// 边
EData *edges[] = {
// 起点 终点 权
new EData('A', 'B', 12),
new EData('A', 'F', 16),
new EData('A', 'G', 14),
new EData('B', 'C', 10),
new EData('B', 'F', 7),
new EData('C', 'D', 3),
new EData('C', 'E', 5),
new EData('C', 'F', 6),
new EData('D', 'E', 4),
new EData('E', 'F', 2),
new EData('E', 'G', 8),
new EData('F', 'G', 9),
};
int vlen = sizeof(vexs)/sizeof(vexs[0]);
int elen = sizeof(edges)/sizeof(edges[0]);
ListUDG* pG;
// 自定义"图"(输入矩阵队列)
//pG = new ListUDG();
// 采用已有的"图"
pG = new ListUDG(vexs, vlen, edges, elen);
//pG->print(); // 打印图
//pG->DFS(); // 深度优先遍历
//pG->BFS(); // 广度优先遍历
//pG->prim(0); // prim算法生成最小生成树
//pG->kruskal(); // Kruskal算法生成最小生成树
// dijkstra算法获取"第4个顶点"到其它各个顶点的最短距离
pG->dijkstra(3, prev, dist);
return 0;
}
ACM模板--邻接表 无向图 Prim Kruskal Dijkstra
原文作者:Dijkstra算法
原文地址: https://blog.csdn.net/judyge/article/details/45010195
本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
原文地址: https://blog.csdn.net/judyge/article/details/45010195
本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。