原题链接:
64. Minimum Path Sum
【思路】
采用动态规划。动态规划要求利用到上一次的结果,是一种特殊的迭代思想,动态规划的关键是要得到递推关系式。对于本题,从原点到达(i, j)的最小路径等于 :原点到达(i-1, j)最小路径与到达(i, j-1)最小路径中的最小值。即 dp[i][j] = Math.min(dp[i-1][j], dp[i][j-1],由于本题在 grid 中修改不影响结果,那么我就直接在上面修改,而不申请 n * m 大小的空间了:
public class Solution {
public int minPathSum(int[][] grid) {
for(int i=1; i<grid.length; i++) grid[i][0] += grid[i-1][0];
for(int j=1; j<grid[0].length; j++) grid[0][j] += grid[0][j-1];
for (int i=1; i<grid.length; i++) {
for (int j=1; j<grid[0].length; j++) {
grid[i][j] = Math.min(grid[i][j-1], grid[i-1][j]) + grid[i][j];
}
}
return grid[grid.length-1][grid[0].length-1];
}
}
61 / 61
test cases passed. Runtime: 5 ms Your runtime beats 26.34% of javasubmissions.
上面的空间复杂度为 O(n*m),这里可以优化为O(n):
public class Solution {
public int minPathSum(int[][] grid) {
int[] dp = new int[grid.length];
dp[0] = grid[0][0];
for(int i=1; i<grid.length; i++) dp[i] = grid[i][0]+dp[i-1];
for(int j=1; j<grid[0].length; j++)
for(int i=0; i<grid.length; i++)
dp[i] = (i==0 ? dp[i] : Math.min(dp[i], dp[i-1])) + grid[i][j];
return dp[grid.length-1];
}
}
61 / 61
test cases passed. Runtime: 4 ms Your runtime beats 51.38% of javasubmissions.
class Solution(object):
def minPathSum(self, grid):
"""
:type grid: List[List[int]]
:rtype: int
"""
dp = [0]*len(grid)
dp[0] = grid[0][0]
for i in range(1,len(grid)) :
dp[i] = dp[i-1] + grid[i][0]
for j in range(1, len(grid[0])) :
for i in range(len(grid)) :
dp[i] = min(dp[i], dp[i-1]) + grid[i][j] if i > 0 else dp[i]+grid[i][j]
return dp[len(grid)-1]
61 / 61
test cases passed. Runtime: 64 ms Your runtime beats 86.01% of pythonsubmissions.