递归 vs. 迭代 & 动态规划

程序员来说,递归应该是一个与生俱来的思想(a built-in thought),可以通过一个简单的例子来说明。

问题: 有n步台阶,一次只能上1步或2步,共有多少种走法。

步骤1:找到走完前n步台阶和前n-1步台阶之间的关系。

为了走完n步台阶,只有两种方法:从n-1步台阶爬1步走到或从n-2步台阶处爬2步走到。如果f(n)是爬到第n步台阶的方法数,那么f(n) = f(n-1) + f(n-2)。

步骤2: 确保开始条件是正确的。

f(0) = 0;
f(1) = 1;

public static int f(int n){
    if(n <= 2) return n;
    int x = f(n-1) + f(n-2);
    return x;
}

递归方法的时间复杂度是n的指数级,因为有很多冗余的计算,如下:

f(5)
f(4) + f(3)
f(3) + f(2) + f(2) + f(1)
f(2) + f(1) + f(1) + f(0) + f(1) + f(0) + f(1)
f(1) + f(0) + f(1) + f(1) + f(0) + f(1) + f(0) + f(1)

直接的想法是将递归转换为迭代:

public static int f(int n) {

    if (n <= 2){
        return n;
    }

    int first = 1, second = 2;
    int third = 0;

    for (int i = 3; i <= n; i++) {
        third = first + second;
        first = second;
        second = third;
    }

    return third;
}

对这个例子而言,迭代花费的时间更少,你可能也想看看Recursion vs Iteration。

动态规划

动态规划是解决下面这些性质类问题的技术:

  1. 一个问题可以通过更小子问题的解决方法来解决(译者注:即问题的最优解包含了其子问题的最优解,也就是最优子结构性质)。
  2. 有些子问题的解可能需要计算多次(译者注:也就是子问题重叠性质)。
  3. 子问题的解存储在一张表格里,这样每个子问题只用计算一次。
  4. 需要额外的空间以节省时间。

爬台阶问题完全符合上面的四条性质,因此可以用动态规划法来解决。

public static int[] A = new int[100];

public static int f3(int n) {
    if (n <= 2)
        A[n]= n;

    if(A[n] > 0)
        return A[n];
    else
        A[n] = f3(n-1) + f3(n-2);//store results so only calculate once!
    return A[n];
}

转载来自:http://www.codeceo.com/article/10-algorithms-in-programming-interview.html

    原文作者:动态规划
    原文地址: https://blog.csdn.net/lishk314/article/details/45739899
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞