Sumsets
Time Limit: 2000MS | Memory Limit: 200000K | |
Total Submissions: 7686 | Accepted: 3059 |
Description
Farmer John commanded his cows to search for different sets of numbers that sum to a given number. The cows use only numbers that are an integer power of 2. Here are the possible sets of numbers that sum to 7:
1) 1+1+1+1+1+1+1
2) 1+1+1+1+1+2
3) 1+1+1+2+2
4) 1+1+1+4
5) 1+2+2+2
6) 1+2+4
Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000).
Input
A single line with a single integer, N.
Output
The number of ways to represent N as the indicated sum. Due to the potential huge size of this number, print only last 9 digits (in base 10 representation).
Sample Input
7
Sample Output
6
Source
参考NumberPyramids一题
不过此题有更好的递推做法。
状态:
d[i][j]表示前i个二的幂数凑成数j的方法数
空间可以降维到d[j]
状态转移方程:
d[j]=d[j]+d[j-c[i]]
c[i]=2^i
边界:
d[0]=1
代码:
#include<cstdio>
int d[1000005],c[25],n,i,j;
int main()
{
scanf("%d",&n);
c[0]=d[0]=1;
for(i=1;i<=20;i++)
c[i]=c[i-1]<<1;
for(i=0;i<=20&&c[i]<=n;i++)
for(j=c[i];j<=n;j++)
d[j]=(d[j]+d[j-c[i]])%1000000000;
printf("%d/n",d[n]);
}