给定一个带权有向图G=(V,E),其中每条边的权是一个非负实数。另外,还给定V中的一个顶点,称为源。现在要计算从源到其他所有各顶点的最短路径长度。这里的长度就是指路上各边权之和。
Dijkstra算法是解单源最短路径的贪心算法。《算法设计与分析》一书中给出的代码存在问题,其中一个明显的错误就是用==对浮点数进行相等判断。对书中的代码进行修订后实现如下:
public static void dijkstra(int sourcePoint, float[][] weightMatrix, float[] distance, int[] previousPoints) {
// the numbers of points;
int pointNumber = distance.length;
if (sourcePoint <0 || sourcePoint >= pointNumber) {
// the sourcePoint exceed the valid point index;
return ;
}
boolean[] selectedPoints = new boolean[pointNumber];
// initialize three array:
// 1. initialize the array of distance from source point to each point;
// 2. initialize the array of selected points with false;
// 3. initialize the array of previous points with 0;
for(int i=0; i< pointNumber; i++) {
distance[i] = weightMatrix[sourcePoint][i];
selectedPoints[i] = false;
if (Math.abs(distance[i]- Float.MAX_VALUE) < 0.0001f ) {
previousPoints[i] = -1;
}else {
// there is a line link between sourcePoint and currentPoint;
previousPoints[i] = sourcePoint;
}
}
// step 1: put source point into selected set;
selectedPoints[sourcePoint] = true;
for(int i=0; i< pointNumber; i++) {
// a temp variable that store the shortest distance; initialize value with float max.
float tempShortestDist = Float.MAX_VALUE;
// this variable store next candidate point which has shortest distance;
int candidatePoint = sourcePoint;
// step 2: find a point which has shortest distance;
// traverse the set of All Points minus Selected Points and calculate the shorted distance from source to each point
for (int j=0; j<pointNumber; j++) {
if(!selectedPoints[j] && distance[j] < tempShortestDist) {
candidatePoint = j;
tempShortestDist = distance[j];
}
}
// step3 : add the candidate point to selected set;
selectedPoints[candidatePoint] = true;
// step 4: calculate the distance of SPECIAL Path that start from candidatePoint to each point;
for (int j=0; j<pointNumber; j++) {
if (!selectedPoints[j] && weightMatrix[candidatePoint][j] < Float.MAX_VALUE) {
// point j is not in selected points set and there is a line between point candidatePoint and j;
float newDistance = distance[candidatePoint] + weightMatrix[candidatePoint][j];
if (newDistance < distance[j]) {
// the distance from cadidatePoint is less than before(start from previous point);
distance[j] = newDistance;
previousPoints[j] = candidatePoint;
}
}
}// end of for
}// end of for
}