Perfect Squares
Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, …) which sum to n.
For example, given n = 12, return 3 because 12 = 4 + 4 + 4; given n = 13, return 2 because 13 = 4 + 9.
动态规划
复杂度
时间 O(N^2) 空间 O(N)
思路
如果一个数x可以表示为一个任意数a加上一个平方数bxb,也就是x=a+bxb,那么能组成这个数x最少的平方数个数,就是能组成a最少的平方数个数加上1(因为b*b已经是平方数了)。
代码
public class Solution {
public int numSquares(int n) {
int[] dp = new int[n+1];
// 将所有非平方数的结果置最大,保证之后比较的时候不被选中
Arrays.fill(dp, Integer.MAX_VALUE);
// 将所有平方数的结果置1
for(int i = 0; i * i <= n; i++){
dp[i * i] = 1;
}
// 从小到大找任意数a
for(int a = 0; a <= n; a++){
// 从小到大找平方数bxb
for(int b = 0; a + b * b <= n; b++){
// 因为a+b*b可能本身就是平方数,所以我们要取两个中较小的
dp[a + b * b] = Math.min(dp[a] + 1, dp[a + b * b]);
}
}
return dp[n];
}
}