Sorting It All Out
时间限制:
3000 ms | 内存限制:
65535 KB 难度:
3
- 描述
- An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.
- 输入
- Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character “<” and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.
- 输出
- For each problem instance, output consists of one line. This line should be one of the following three:
Sorted sequence determined after xxx relations: yyy…y.
Sorted sequence cannot be determined.
Inconsistency found after xxx relations.
where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy…y is the sorted, ascending sequence.
- 样例输入
4 6 A<B A<C B<C C<D B<D A<B 3 2 A<B B<A 26 1 A<Z 0 0
- 样例输出
Sorted sequence determined after 4 relations: ABCD. Inconsistency found after 2 relations. Sorted sequence cannot be determined.
- 来源
- POJ
- 上传者
输入n和m,n表示26个字母前n个字母,m表示有多少个关系,然后输入m个关系,判断是否这n个字母存在一个排序关系
如果存在输出在几个关系之后就输出几个关系之后就可以确定,比如第一个测试数据,前四个关系输入之后,就输出结果
后两个关系输入不用管,,如果存在环那么就输出冲突,如果不能确定次序就输出不能确定。
拓扑排序的理解,度的判断#include<stdio.h> #include<string.h> #define M 30 int re[M],path[M][M],du[M],d[M]; char str[8]; int topo(char s[],int n){ int i,j,k; int A=s[0]-'A'; int B=s[2]-'A'; if(path[A][B]==0){ path[A][B]=1; d[B]++;//因为每一次调用函数的时候要保持原来的图的数据,所以用d数组保存度不变 } for(i=0;i<n;i++) du[i]=d[i];//du数组来判断当前函数度的变化 int flag=1,cnt,pos=0; for(i=0;i<n;i++){ cnt=0; for(j=0;j<n;j++){ if(du[j]==0){ cnt++; k=j; } } if(cnt==0) return -1;//cnt等于0表示存在环,即存在冲突 else if(cnt>1) flag=0;//存在多个度为0的点,即次序不能确定 du[k]--; re[pos++]=k; for(j=0;j<n;j++){ if(path[k][j]==1) du[j]--; } } if(flag) return 1; return 0; } void result(int n,int m){ int i,j; int ok=1; for(i=0;i<m;i++){ scanf("%s",str); if(ok){ int t=topo(str,n); if(t==1){ printf("Sorted sequence determined after %d relations: ",i+1); for(j=0;j<n;j++) printf("%c",char(re[j]+'A')); printf(".\n"); ok=0; } else if(t==-1){ printf("Inconsistency found after %d relations.\n",i+1); ok=0; } } } if(ok) printf("Sorted sequence cannot be determined.\n"); } int main(){ int n,m; char str[8]; while(scanf("%d%d",&n,&m),n+m){ if(m<n-1){//关系不够不能确定次序 for(int i=0;i<m;i++) scanf("%s",str); printf("Sorted sequence cannot be determined.\n"); }else{ memset(d,0,sizeof(d)); memset(path,0,sizeof(path)); result(n,m); } } return 0; }