题目描述
Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
Note:
Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ≤ b ≤ c)
The solution set must not contain duplicate triplets.
For example, given array S = {-1 0 1 2 -1 -4},
A solution set is:
(-1, 0, 1)
(-1, -1, 2)
分析
求解3个数的和,需要O(n2);去重,需要O(n);
① 对数组进行排序;
② start从0到n-1,对num[start]求另外两个数,这里用mid和end;
③ mid指向start+1,q指向结尾。sum = num[start] + num[mid]+ num[end];
④ 利用加逼定理求解,终止条件是mid == end;
⑤ 顺带去重。
去重时:
① 如果start到了start+1,num[start] == num[start – 1],则求出的解肯定重复了;
② 如果mid++,num[mid] = num[mid – 1],则求出的解肯定重复了。
代码
public static List<List<Integer>> threeSum(int[] nums) {
if (nums == null || nums.length < 3) {
return new ArrayList<List<Integer>>();
}
Set<List<Integer>> set = new HashSet<List<Integer>>();
Arrays.sort(nums);
for (int start = 0; start < nums.length; start++) {
// 去重
if (start != 0 && nums[start - 1] == nums[start]) {
continue;
}
int mid = start + 1, end = nums.length - 1;
// 相当于2Sum
while (mid < end) {
int sum = nums[start] + nums[mid] + nums[end];
if (sum == 0) {
List<Integer> tmp = new ArrayList<Integer>();
tmp.add(nums[start]);
tmp.add(nums[mid]);
tmp.add(nums[end]);
set.add(tmp);
// 去重
while (++mid < end && nums[mid - 1] == nums[mid])
;
while (--end > mid && nums[end + 1] == nums[end])
;
}
else if (sum < 0) {
mid++;
}
else {
end--;
}
}
}
return new ArrayList<List<Integer>>(set);
}