LeetCode 198 House Robber

题目描述

You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.

Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.

Credits:
Special thanks to @ifanchu for adding this problem and creating all test cases. Also thanks to @ts for adding additional test cases.

分析

本质:求数组不相邻元素最大和

动态规划(背包问题):设P[i]表示从0~i个房间抢劫的最大收益。

P[i]={nums[i]+P[i2]iP[i1]i

每次迭代只需要P的两个元素,并不需要设数组P。设两个变量为:

take :nums[i] + P[i-2]
nonTake:P[i-1]

代码

时间复杂度是O(n),空间复杂度是O(n)的代码:

    public static int rob2(int[] nums) {

        if (nums.length == 0) {
            return 0;
        }

        if (nums.length == 1) {
            return nums[0];
        }

        int[] P = new int[nums.length];

        P[0] = nums[0];
        P[1] = Math.max(nums[0], nums[1]);

        for (int i = 2; i < nums.length; i++) {
            P[i] = Math.max(nums[i] + P[i - 2], P[i - 1]);
        }

        return P[nums.length - 1];
    }

时间复杂度是O(n),空间复杂度是O(1)的代码:

    public static int rob(int[] nums) {

        int take = 0;
        int nonTake = 0;
        int max = 0;

        for (int i = 0; i < nums.length; i++) {
            take = nums[i] + nonTake;
            nonTake = max;
            max = Math.max(take, nonTake);
        }

        return max;
    }
    原文作者:_我们的存在
    原文地址: https://blog.csdn.net/Yano_nankai/article/details/50179515
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞