LeetCode 300 Longest Increasing Subsequence

题目描述

Given an unsorted array of integers, find the length of longest increasing subsequence.

For example,

Given [10, 9, 2, 5, 3, 7, 101, 18],

The longest increasing subsequence is [2, 3, 7, 101], therefore the length is 4. Note that there may be more than one LIS combination, it is only necessary for you to return the length.

Your algorithm should run in O(n2) complexity.

Follow up: Could you improve it to O(n log n) time complexity?

Credits:
Special thanks to @pbrother for adding this problem and creating all test cases.

分析

定义一个数组s,s[i]用来定义从0…i的LIS,求解s[i+1]时,循环i次。时间复杂度是O(n2)。有更好的算法,能够到O(nlogn),过段时间研究+_+

O(n2)的伪代码如下:

// Let S[i] be OPT(i)
S[1] := 1
L := S[1]
for i from 2 to n
    S[i] := 1 // at least contain A[i]
    for j from 1 to i-1
        if A[j] < A[i] then S[i] := max( S[i], S[j]+1 )
    end
    L := max( L, S[i] )
end
return L

代码

    public int lengthOfLIS(int[] nums) {

        if (nums == null || nums.length == 0) {
            return 0;
        }

        int n = nums.length;

        int max = 1;

        int[] s = new int[n];
        Arrays.fill(s, 1);

        // 自底向上,动态规划求解
        for (int i = 1; i < n; i++) {
            for (int j = 0; j < i; j++) {
                if (nums[j] < nums[i]) {
                    s[i] = Math.max(s[i], s[j] + 1);
                }
            }
            max = Math.max(max, s[i]);
        }

        return max;
    }
    原文作者:_我们的存在
    原文地址: https://blog.csdn.net/yano_nankai/article/details/50297493
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞