WebGL 绘制Line的bug(三)

插播一则广告(长期有效)

**MONO哥需要在武汉招JavaScript工程师若干
要求:对前端技术(JavasScript、HTML、CSS),对可视化技术(Canvas、WebGL)有浓厚的兴趣
基础不好的可培养,基础好的可共谋大事
感兴趣的给我发邮件:hr@servasoft.com**

————————————————————正文的分割线—————————————————————-

之前铺垫了许多,今天可以来分享点纯干货了。

上一篇已经讲述了通过面模拟线条时候,每一个顶点的顶点数据包括:端点坐标、偏移量、前一个端点坐标、后一个端点坐标,当然如果我们通过索引的方式来绘制的话,还包括索引数组,下面的代码通过传递一组线条的端点数组来创建上述相关数据:

bk.Line3D = function (points,colors){
     this.points = points;
     this.colors = colors;
}

bk.Line3D.prototype.computeData = function() {
      var len = this.points.length;
      var count = len * 3 * 2;    
      var position = new Float32Array(count);
      var positionPrev =  new Float32Array(count);
      var positionNext = new Float32Array(count);
      var color = new Float32Array(count);

      var offset = new Float32Array(len * 2);
      var indicesCount = 3 * 2 * (len - 1);
      var indices = new Uint16Array(indicesCount);
      var triangleOffset = 0,vertexOffset = 0;
      for(var i = 0; i < len; i ++){
            var i3 = i * 3 * 2;
            var point = this.points[i];
            position[i3 + 0] = point.x;
            position[i3 + 1] = point.y;
            position[i3 + 2] = point.z;
            position[i3 + 3] = point.x;
            position[i3 + 4] = point.y;
            position[i3 + 5] = point.z;

            var r = (i + 1) / len;
            var g = Math.random();
            var b = Math.random();
            g = r;
            b = 0;
            r =  1- r;
            color[i3 + 0] = r;
            color[i3 + 1] = g;
            color[i3 + 2] = b;
            color[i3 + 3] = r;
            color[i3 + 4] = g;
            color[i3 + 5] = b;

             if (i < count - 1) {
                    var i3p = i3 + 6;
                    positionNext[i3p + 0] = point.x;
                    positionNext[i3p + 1] = point.y;
                    positionNext[i3p + 2] = point.z;

                    positionNext[i3p + 3] = point.x;
                    positionNext[i3p + 4] = point.y;
                    positionNext[i3p + 5] = point.z;
                }
             if (i > 0) {
                    var i3n = i3 - 6;
                    positionPrev[i3n + 0] = point.x;
                    positionPrev[i3n + 1] = point.y;
                    positionPrev[i3n + 2] = point.z;

                    positionPrev[i3n + 3] = point.x;
                    positionPrev[i3n + 4] = point.y;
                    positionPrev[i3n + 5] = point.z;
             }

             var idx = 3 * i;

             var i2 = i * 2;
             offset[i2 + 0]  = 5;
             offset[i2 + 1]  = -5;
      }
      var end = count - 1;
      for(i = 0;i < 6 ;i ++){
          positionNext[i] = positionNext[i + 6];
          positionPrev[end - i] = positionPrev[end - i - 6];
      }
      for(i = 0;i < indicesCount ;i ++){
          if(i % 2 == 0){
             indices[triangleOffset ++] = i;
             indices[triangleOffset ++] = i + 1;
             indices[triangleOffset ++] = i + 2;
          }else{
             indices[triangleOffset ++] = i + 1;
             indices[triangleOffset ++] = i;
             indices[triangleOffset ++] = i + 2;
          }
      }

      this.position  = position;
      this.positionNext  = positionNext;
      this.positionPrev = positionPrev;
      this.color = color;
      this.offset = offset;
      this.indices = indices;
};

代码首先定义了一个类,该类构造函数可以传入端点数组;在该类上定义了一个方法 computeData,用来计算顶点数组,每个顶点包括上文所述的4个信息,另外增加了一个颜色信息。
读者,可以结合第二篇的思路和上面的代码来来理解,此处不再详述 代码的细节。

另外一个比较重要的代码是顶点着色器中,通过传入的这些顶点信息来计算最终的顶点坐标,代码如下:

var lineVS = `
    attribute vec3 aPosition;
    attribute vec3 aPositionPre;
    attribute vec3 aPositionNext;
    attribute float aOffset;
    attribute vec3 aColor;
    varying  vec3  vColor;

    uniform mat4 uWorldViewProjection;
    uniform vec4 uViewport;
    uniform float uNear;

    uniform mat4 uViewMatrix;
      uniform mat4 uProjectMatrix;

    vec4 clipNear(vec4 p1,vec4 p2){
        float n = (p1.w - uNear) / (p1.w - p2.w);
        return vec4(mix(p1.xy,p2.xy,n),-uNear,uNear);
    }

    void main(){

        vec4 prevProj = uWorldViewProjection * vec4(aPositionPre, 1.0);
        vec4 currProj = uWorldViewProjection * vec4(aPosition, 1.0);
             vec4 nextProj = uWorldViewProjection * vec4(aPositionNext, 1.0);
             if (currProj.w < 0.0) {
           if (prevProj.w < 0.0) {
            currProj = clipNear(currProj, nextProj);
           }else {
            currProj = clipNear(currProj, prevProj);
           }
        }
        vec2 prevScreen = (prevProj.xy / abs(prevProj.w) + 1.0) * 0.5 * uViewport.zw;
        vec2 currScreen = (currProj.xy / abs(currProj.w) + 1.0) * 0.5 * uViewport.zw;
        vec2 nextScreen = (nextProj.xy / abs(nextProj.w) + 1.0) * 0.5 * uViewport.zw;
        vec2 dir;
        float len = aOffset;
        if(aPosition == aPositionPre){
            dir = normalize(nextScreen - currScreen);
        }else if(aPosition == aPositionNext){
            dir = normalize(currScreen - prevScreen);
        }else {
            vec2 dirA = normalize(currScreen - prevScreen);
            vec2 dirB = normalize(nextScreen - currScreen);
            vec2 tanget = normalize(dirA + dirB);
            float miter = 1.0 / max(dot(tanget,dirA),0.5);
            len *= miter;
            dir = tanget;
        }
        dir = vec2(-dir.y,dir.x) * len;
        currScreen += dir;
        currProj.xy = (currScreen / uViewport.zw - 0.5) * 2.0 * abs(currProj.w);
        vec4 pos = uProjectMatrix * uViewMatrix *  vec4(aPosition,1.0);
        vColor = aColor;
        gl_Position = currProj;
    }
`;

计算的原理,也可以参考第二篇的论述,此处需要注意的是,为了能够计算顶点在屏幕上的最终位置,需要把canvans的尺寸大小传递给着色器(uniform 变量 uViewport),同样为了计算裁剪,需要把镜头的near值传递给着色器(uniform 变量 uNear),而变量uWorldViewProjection表示模型视图透视变换的矩阵,熟悉WebGL的同学一定清楚。

如果你对WebGL 感兴趣,可以了解下我们用WebGL开发的3D机房项目:
HTML5,不只是看上去很美(第二弹:打造最美3D机房)

关于这个话题就先分享到这里了,如果大家对其它方面与兴趣的,我们也可以一起来探讨。

    原文作者:MonoLog
    原文地址: https://segmentfault.com/a/1190000010333913
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞