题目:
Given an index k, return the kth row of the Pascal’s triangle.
For example, given k = 3,
Return [1,3,3,1]
.
Note:
Could you optimize your algorithm to use only O(k) extra space?
思路:
类似
http://blog.csdn.net/lanxu_yy/article/details/11881907,但是为了合理利用空间,我们只记录上一层的结果。也可以用递归的方法来完成。
代码:
非递归方法:
class Solution {
public:
vector<int> getRow(int rowIndex) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
if(rowIndex == 0)
{
vector<int> r;
r.push_back(1);
return r;
}
else if(rowIndex == 1)
{
vector<int>* r = new vector<int>();
r->push_back(1);
r->push_back(1);
return *r;
}
else
{
vector<int>* temp = new vector<int>();
vector<int>* r;
temp->push_back(1);
temp->push_back(1);
for(int i = 2; i <= rowIndex; i++)
{
r = new vector<int>();
r->push_back(1);
for(int j = 1; j < i; j++)
{
r->push_back(temp->at(j-1) + temp->at(j));
}
r->push_back(1);
delete temp;
temp = r;
}
return *r;
}
}
};
递归方法:
class Solution {
public:
vector<int> getRow(int rowIndex) {
vector<int> tmp;
if(rowIndex == 0){
tmp.push_back(1);
}
else if(rowIndex == 1){
tmp.push_back(1);
tmp.push_back(1);
}
else{
vector<int> parent = getRow(rowIndex - 1);
for(int i = 0; i <= rowIndex; i++){
if(i == 0 || i == rowIndex){
tmp.push_back(1);
}
else{
tmp.push_back(parent[i - 1] + parent[i]);
}
}
}
return tmp;
}
};