与二分查找相比,斐波那契查找算法的明显优点在于它只涉及加法和减法运算,而不用除法。因为除法比加减法要占去更多的机时,因此,斐波那契查找的平均性能要比折半查找好。
#include <stdio.h>
void fibonacci(int *f)
{
f[0] = 1;
f[1] = 1;
for(int i = 2;i < MAXSIZE;++i)
f[i] = f[i - 2] + f[i - 1];
}
int fibonacci_search(int *a,int key,int n)
{
int low = 0,high = n - 1;
int mid = 0;
int k = 0;
int F[MAXSIZE];
fibonacci(F);
while(n > F[k] - 1) //计算出n在斐波那契中的数列
++k;
for(int i = n;i < F[k] - 1;++i) //把数组补全
a[i] = a[high];
while(low <= high)
{
mid = low + F[k-1] - 1; //根据斐波那契数列进行黄金分割
if(a[mid] > key)
{
high = mid - 1;
k = k - 1;
}
else if(a[mid] < key)
{
low = mid + 1;
k = k - 2;
}
else{
if(mid <= high) //如果为真则找到相应的位置
return mid;
else
return -1;
}
}
return -1;
}
int main()
{
int a[MAXSIZE] = {5,15,19,20,25,31,38,41,45,49,52,55,57};
int k;
printf("请输入要查找的数字:\n");
scanf("%d",&k);
int pos = fibonacci_search(a,k,13);
if(pos != -1)
printf("在数组的第%d个位置找到元素:%d\n",pos + 1,k);
else
printf("未在数组中找到元素:%d\n",k);
return 0;
}