二分查找算法是在有序数组中用到的较为频繁的一种算法,在未接触二分查找算法时,最通用的一种做法是,对数组进行遍历,跟每个元素进行比较,其时间为O(n).但二分查找算法则更优,因为其查找时间为O(lgn),譬如数组{1, 2, 3, 4, 5, 6, 7, 8, 9},查找元素6,用二分查找的算法执行的话,其顺序为:
1.第一步查找中间元素,即5,由于5<6,则6必然在5之后的数组元素中,那么就在{6, 7, 8, 9}中查找,
2.寻找{6, 7, 8, 9}的中位数,为7,7>6,则6应该在7左边的数组元素中,那么只剩下6,即找到了。
二分查找算法就是不断将数组进行对半分割,每次拿中间元素和goal进行比较。
#include <iostream> using namespace std; //二分查找 int binary_search(int* a, int len, int goal); int main() { const int LEN = 10000; int a[LEN]; for(int i = 0; i < LEN; i++) a[i] = i - 5000; int goal = 0; int index = binary_search(a, LEN, goal); if(index != -1) cout<<goal<<"在数组中的下标为"<<binary_search(a, LEN, goal)<<endl; else cout<<"不存在"<<goal<<endl; return 0; } int binary_search(int* a, int len, int goal) { int low = 0; int high = len - 1; while(low <= high) { int middle = (low + high)/2; if(a[middle] == goal) return middle; //在左半边 else if(a[middle] > goal) high = middle - 1; //在右半边 else low = middle + 1; } //没找到 return -1; }