各种查找算法效率比较

题目描述:
给定一个已经排好序的N个整数的序列(数据从1到N),在该序列中查找指定的整数,并观察不同算法的运行时间。考查3类查找算法:折半查找,平衡二叉排序树的查找,B-树的查找。
要求:
(1)构造树表的算法要考虑各种可能的输入数据序列;
(2)可根据要求输出树表结构;
(3)分析最坏情况下,三种查找算法的复杂度;
(4)测量并比较三种算法在N=100,500,1000,2000,4000,6000,8000,10000时的性能,要求完成以下三个方面的工作:
① 对每个测试数据集,统计计算每种查找算法的ASL;
② 对每个测试数据集运行多次获得运行时间的平均值;
③ 绘制算法实际运行结果(ASL和运行时间)的曲线图,验证和理论分析的时间复杂度的吻合性。

#include<iostream>
#include<stdio.h>
#include <time.h>
#include <malloc.h>

using namespace std;

#define CLOCKS_PER_SEC ((clock_t)1000)
#define MaxSize 100002
#define M 100
int Step;
int Bjishu;
using namespace std;

typedef struct
{
    int key;

}DataType;
typedef struct
{
    DataType list[MaxSize];
    int size;
}SeqList;

typedef struct node
{
    DataType data;
    struct node *LeftChild;//
    struct node *RightChild;//
    struct node *Parent;
    int i;//height
}BITreeNode, BTnode, *Tree;//二叉平衡树结构体

typedef struct Node
{
    struct Node *parent;        /*指向双亲结点*/
    int key[M];              /*关键字向量,0号单元未用(M-1阶)*/
    struct Node *ptr[M];        /*子树指针向量*/
}B_TNode;//B_树结构体


void ListInitiate(SeqList *L)
{
    L->size = 0;
}
int ListLength(SeqList L)
{
    return L.size;
}
int ListInsert(SeqList *L, int x)
{
    // int j;
    if (L->size >= MaxSize)
    {
        printf("顺序表已满\n");
        return 0;
    }
    else
    {
        //for(j=L->size;j>i;j--)L->list[j]=L->list[j-1];
        L->list[L->size].key = x;
        L->size++;
        return 1;
    }
}
int BInarySearch(SeqList S, DataType x)//折半查找
{
    int js = 1;                        //次数记录
    int low = 0;
    int high = S.size - 1;
    int mid;
    while (low <= high)
    {
        mid = (low + high) / 2;             //中间位置
        if (S.list[mid].key == x.key)return js;
        else if (S.list[mid].key<x.key)low = mid + 1;
        else if (S.list[mid].key>x.key)high = mid - 1;
        js++;
    }
    return -1;
}
int Hetree(BTnode *Root)
{
    if (Root == NULL)return 0;
    return
        Hetree(Root->LeftChild)>Hetree(Root->RightChild) ? Hetree(Root->LeftChild) + 1 : Hetree(Root->RightChild) + 1;
}


int IsBlance(BTnode *Root)//判断二叉树的平衡)
{
    int bf;
    if (Root != NULL)
    {
        bf = Hetree(Root->LeftChild) - Hetree(Root->RightChild);
        if ((bf<-1) || (bf>1))
            return 0;//不平衡
        else
        {
            if (IsBlance(Root->LeftChild) && IsBlance(Root->RightChild))
                return 1;
            else
                return 0;
        }
    }
    return 1;
}
BTnode *R_Rotate(BTnode *Root, BTnode *p)//LL型调平衡(右旋)
{
    BTnode *b, *q, *c, *d;
    q = p->Parent;
    b = p->LeftChild;
    c = b->LeftChild;
    d = b->RightChild;
    p->LeftChild = d;
    if (d != NULL)
        d->Parent = p;
    b->RightChild = p;
    p->Parent = b;
    if (q == NULL)
    {
        Root = b;
        b->Parent = NULL;            //b的父结点为空,即b就是根结点
    }
    else if (q->LeftChild == p)        //如果a是父结点的左孩子
    {
        q->LeftChild = b;            //将b赋值给q的左孩子
        b->Parent = q;            //b的父结点是q
    }
    else if (q->RightChild == p)        //如果a是父结点的右孩子
    {
        q->RightChild = b;            //将b赋值给q的右孩子
        b->Parent = q;            //b的父结点是q
    }
    return Root;
}


BTnode *L_Rotate(BTnode *Root, BTnode *p)//RR型调平衡
{
    BTnode *b, *q, *c, *d;
    q = p->Parent;

    b = p->RightChild;
    c = b->RightChild;
    d = b->LeftChild;

    p->RightChild = d;
    if (d != NULL)
        d->Parent = p;

    b->LeftChild = p;
    p->Parent = b;

    if (q == NULL)
    {
        Root = b;                //二叉树的根结点就是b,把b赋值给树Root
        b->Parent = NULL;        //b的父结点为空,即b就是根结点
    }
    else if (q->LeftChild == p)    //如果p是父结点的左孩子
    {
        q->LeftChild = b;        //将b赋值给q的左孩子
        b->Parent = q;        //b的父结点是q
    }
    else if (q->RightChild == p)    //如果p是父结点的右孩子
    {
        q->RightChild = b;        //将b赋值给q的右孩子
        b->Parent = q;        //b的父结点是q
    }

    return Root;
}
BTnode *LR_Rotate(BTnode *Root, BTnode *p)
{
    BTnode *b, *q, *c, *d;
    q = p->Parent;
    b = p->LeftChild;
    c = b->LeftChild;
    d = b->RightChild;
    p->LeftChild = d;
    if (d != NULL)
        d->Parent = p;
    b->RightChild = p;
    p->Parent = b;
    if (q == NULL)
    {
        Root = b;
        b->Parent = NULL;            //b的父结点为空,即b就是根结点
    }
    else if (q->LeftChild == p)        //如果a是父结点的右孩子
    {
        q->LeftChild = b;            //将b赋值给q的左孩子
        b->Parent = q;            //b的父结点是q
    }
    else if (q->RightChild == p)        //如果a是父结点的左孩子
    {
        q->RightChild = b;            //将b赋值给q的右孩子
        b->Parent = q;            //b的父结点是q
    }
    return Root;
}
BTnode *RL_Rotate(BTnode *Root, BTnode *p)
{
    BTnode *b, *q, *c, *d;
    q = p->Parent;

    b = p->RightChild;
    c = b->RightChild;
    d = b->LeftChild;

    p->RightChild = d;
    if (d != NULL)
        d->Parent = p;

    b->LeftChild = p;
    p->Parent = b;

    if (q == NULL)
    {
        Root = b;                //二叉树的根结点就是b,把b赋值给树Root
        b->Parent = NULL;        //b的父结点为空,即b就是根结点
    }
    else if (q->LeftChild == p)    //如果p是父结点的右孩子
    {
        q->LeftChild = b;        //将b赋值给q的左孩子
        b->Parent = q;        //b的父结点是q
    }
    else if (q->RightChild == p)    //如果p是父结点的左孩子
    {
        q->RightChild = b;        //将b赋值给q的右孩子
        b->Parent = q;        //b的父结点是q
    }

    return Root;
}
int blancebinarytreesearch(BTnode *Root, int x)//查找平衡二叉排序树
{
    BTnode *p;
    int count = 0;
    if (Root != NULL)
    {
        p = Root;
        while (p != NULL)
        {
            count++;
            if (p->i == x)return count;
            else if (x<p->i)p = p->LeftChild;
            else if (x>p->i)p = p->RightChild;
        }
    }
    return 0;
}
int InPEtree(BTnode **Root, int x)//创建平衡二叉排序树的函数
{
    BTnode *cur, *parent = NULL, *p, *q;
    cur = *Root;
    while (cur != NULL)
    {
        if (x == cur->i)return 0;
        parent = cur;
        if (x<cur->i)cur = cur->LeftChild;
        else if (x>cur->i)cur = cur->RightChild;
    }
    p = (BTnode *)malloc(sizeof(BTnode));
    p->i = x;
    p->LeftChild = NULL;
    p->RightChild = NULL;
    p->Parent = NULL;
    if (parent == NULL)*Root = p;
    else if (x<parent->i)
    {
        parent->LeftChild = p;
        p->Parent = parent;
    }
    else if (x>parent->i)
    {
        parent->RightChild = p;
        p->Parent = parent;
    }

    int bf;

    if (IsBlance(*Root) == 0)        //如果二叉树是不平衡的
    {
        bf = Hetree(parent->LeftChild) - Hetree(parent->RightChild);
        while ((bf >= -1) && (bf <= 1))
        {
            parent = parent->Parent;
            bf = Hetree(parent->LeftChild) - Hetree(parent->RightChild);
        }
        q = parent;///找到离插入点最近的不平衡点
        if (p->i>q->i&&p->i>q->RightChild->i)//新结点插入在q结点的右孩子的右子树中。
        {
            *Root = L_Rotate(*Root, q);
        }
        else if (p->i>q->i&&p->i<q->RightChild->i)//新结点插入在A结点的右孩子的左子树中
        {
            *Root = RL_Rotate(*Root, q);
        }
        else if (p->i<q->i&&p->i>q->LeftChild->i)//新结点插入在q结点的左孩子的右子树中
        {
            *Root = LR_Rotate(*Root, q);
        }
        else //结点插入在A结点的左孩子的左子树中
        {
            *Root = R_Rotate(*Root, q);
        }
    }
    return 1;
}

void PrintBiTree(BTnode *root, int n)
{
    int i;
    if (root == NULL)return;
    PrintBiTree(root->RightChild, n + 1);
    for (i = 0; i<n - 1; i++)printf(" ");
    if (n>0)
    {
        printf("-----");
        printf("%d\n", root->i);
    }
    if (n == 0)
    {
        //printf("--");
        printf("%d\n", root->i);
    }
    PrintBiTree(root->LeftChild, n + 1);
}

int B_treetreesearch(B_TNode *Root, int x)//查找B-树
{
    int i;
    if (Root == NULL)return 0;
    for (i = 1; i <= Root->key[0]; i++)
    {
        Bjishu++;
        if (x<Root->key[i])break;
        if (x == Root->key[i])return Bjishu;
    }
    return B_treetreesearch(Root->ptr[i - 1], x);
}

B_TNode* B_treetreeinsert(B_TNode *Root, int x)//3.B-树的插入函数
{
    int i;
    if (Root == NULL)//B_树为空
    {
        Root = (B_TNode *)malloc(sizeof(B_TNode));
        Root->key[0] = 1;
        Root->key[1] = x;
        for (i = 0; i<M; i++)
            Root->ptr[i] = NULL;
        Root->parent = NULL;
        return Root;
    }
    B_TNode *p = Root, *q, *s;
    q = p;
    while (p != NULL)
    {
        for (i = 1; i <= p->key[0]; i++)
            if (x<p->key[i])break;
        q = p;
        p = p->ptr[i - 1];
    }
    int j;
    q->key[i] = x;

    for (j = q->key[0]; j >= i; j--)
    {
        q->key[j + 1] = q->key[j];
        q->ptr[j + 1] = q->ptr[j];
    }
    q->key[0]++;
    int temp;
    i = q->key[0];
    int m, num = 0;
    while (q->key[0] == Step + 1 - 1)
    {
        num++;
        temp = q->key[(i - 1) / 2 + 1];
        p = q->parent;
        q->key[0] = (i - 1) / 2;//分裂左树
        m = (i - 1) / 2 + 1;
        //加到双亲结点
        if (p == NULL)
        {
            p = (B_TNode *)malloc(sizeof(B_TNode));
            for (i = 0; i<M; i++)
                p->ptr[i] = NULL;
            Root = p;
            Root->parent = NULL;
            p->key[0] = 1;
            p->key[1] = temp;
            p->ptr[0] = q;
            p->parent = NULL;
        }
        else
        {
            for (i = 1; i <= p->key[0]; i++)
                if (temp<p->key[i])break;
            for (j = p->key[0]; j >= i; j--)
            {
                p->key[j + 1] = p->key[j];
                p->ptr[j + 1] = p->ptr[j];
            }
            p->key[i] = temp;//
            p->ptr[i - 1] = q;//
            p->key[0]++;
        }
        //分配右树
        s = (B_TNode *)malloc(sizeof(B_TNode));
        for (i = 0; i<M; i++)
            s->ptr[i] = NULL;
        p->ptr[p->key[0]] = s;
        p->ptr[p->key[0] - 1] = q;
        s->key[0] = Step + 1 - 1 - m;
        s->parent = p;
        q->parent = p;
        for (i = 1; i <= s->key[0]; i++)
        {
            s->key[i] = q->key[i + m];
            s->ptr[i - 1] = q->ptr[i + m - 1];    ////////////////

        }
        if (num>1)s->ptr[i - 1] = q->ptr[i + m - 1];
        for (i = 0; i <= s->key[0]; i++)
        {
            if (s->ptr[i] != NULL)s->ptr[i]->parent = s;////////////////
        }
        q = p;
        i = q->key[0];
    }
    return Root;
}
int B_treetreeprint(B_TNode *Root, int n)
{
    int i, j;
    if (Root == NULL)return 0;

    for (i = Root->key[0]; i>0; i--)
    {
        B_treetreeprint(Root->ptr[i], n + 1);
        for (j = 0; j<n; j++)
            printf("----");
        cout << Root->key[i] << endl;
    }
    B_treetreeprint(Root->ptr[0], n + 1);
}
/* int B_treetreeprint(B_TNode *Root,int n) { int i; if(Root==NULL)return 0; if(Root->key[0]>=2) { B_treetreeprint(Root->ptr[2],n+1); for(i=0;i<n;i++) printf("--"); printf("%d ",Root->key[2]); printf("\n"); } if(Root->key[0]>=1) { B_treetreeprint(Root->ptr[1],n+1); for(i=0;i<n;i++) printf("--"); printf("%d ",Root->key[1]); printf("\n"); //printf("\n"); } if(Root->ptr[0]!=NULL) { B_treetreeprint(Root->ptr[0],n+1); // for(i=0;i<n;i++) // printf("---"); } } int B_treetreeprint(B_TNode *Root,int n) { int i; if(Root==NULL)return 0; if(Root->key[0]>=2) { B_treetreeprint(Root->ptr[2],n+1); for(i=0;i<n;i++) printf("--"); printf("%d ",Root->key[2]); printf("\n"); } if(Root->key[0]>=1) { B_treetreeprint(Root->ptr[1],n+1); for(i=0;i<n;i++) printf("--"); printf("%d ",Root->key[1]); printf("\n"); //printf("\n"); } if(Root->ptr[0]!=NULL) { B_treetreeprint(Root->ptr[0],n+1); // for(i=0;i<n;i++) // printf("---"); } } */
int main()
{
    int i;
    int s, j, k, k1, k2, k3, Size, Sizex;
    int x;
    SeqList L;
    DataType Me;
    double runtime;
    double Start, End;
    printf("请输入序列中数的个数Size:");
    //while (scanf("%d", &Size) != EOF&&Size != 0)
    scanf("%d", &Size);
    {
        ListInitiate(&L); //初始化线性表
        Tree t = NULL;   //初始化二叉平衡树
        Tree zt = NULL; //初始化折半查找树
        B_TNode *Root = NULL;
        s = 0;
        printf("请输入B_树的阶:");
        scanf("%d", &Step);
        for (i = 0; i<Size; i++)
        {
            InPEtree(&t, i + 1); //Insert (&t,i+1);创建二叉平衡树
            ListInsert(&L, i + 1);//创建线性表
            Root = B_treetreeinsert(Root, i + 1);//创建B_树
        }
        printf("平衡二叉树\n");
        PrintBiTree(t, 0);//打印二叉平衡树PrintfTree(t,1);
        printf("\nB_树\n");
        B_treetreeprint(Root, 0);
        //printf("请输入需要查找的数(1~Size):");
        Sizex = Size;
        printf("输入要查找的数\n");
        scanf("%d",&Sizex);
        if (Sizex <0 || Sizex >Size)
        {
            printf("查找失败,不存在此数!\n");
            return 0;
        }
        //while (Sizex >= 1)
        {

            k1 = 0;  k2 = 0; k3 = 0;          //记次数
            k1 = blancebinarytreesearch(t, Sizex);
            printf("平衡二叉树查询%d用了%d次\n", Sizex, k1);
            Me.key = Sizex;
            k2 = BInarySearch(L, Me);
            printf("折半查找法查询%d用了%d次\n", Sizex, k2);
            Bjishu = 0;
            printf("B_树查找%d用了%d次\n", Sizex, B_treetreesearch(Root, Sizex));
            //printf("请输入需要查找的数(1~Size):");
        }

        k = 0;
        Start = clock();//开始计时
        for (i = 0; i<Size; i++)
        {
            k += blancebinarytreesearch(t, i + 1);//SearchBST(t,i+1,s);
        }
        End = clock();//结束计时】
        runtime = (double)(End - Start) / (CLOCKS_PER_SEC*Size);
        printf("%d个数的数组\n\t\t 平衡二叉排序树ASL= %.2f \t平均时间:%lf ms\n", Size, (float)k / Size, runtime);

        k = 0;
        Start = clock();
        for (i = 0; i<Size; i++)
        {
            Me.key = i + 1;
            k += BInarySearch(L, Me);
        }
        End = clock();
        runtime = (double)(End - Start) / (CLOCKS_PER_SEC*Size);
        printf("\t\t 折半查找法ASL= %.2f \t 平均时间:%lf ms\n", (float)k / Size, runtime);

        Bjishu = 0;
        Start = clock();
        for (i = 0; i<Size; i++)
        {
            B_treetreesearch(Root, i + 1);
        }
        End = clock();
        runtime = (double)(End - Start) / (CLOCKS_PER_SEC*Size);
        printf("\t\t B_树查找ASL= %.2f \t 平均时间:%lf ms\n", (float)Bjishu / Size, runtime);

    }
    return 0;
}
    原文作者:查找算法
    原文地址: https://blog.csdn.net/u014427196/article/details/44598923
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞