分类模型——Logistics Regression

Logistics regression

from sklearn.linear_model import LogisticRegression
clf = LogisticRegression()
clf.fit(x_train, y_train)  

准确率与召回率

准确率:scikit-learn提供了accuracy_score来计算:LogisticRegression.score()
准确率是分类器预测正确性的比例,但是并不能分辨出假阳性错误和假阴性错误
精确率是指分类器预测出的垃圾短信中真的是垃圾短信的比例,P=TP/(TP+FP)
召回率在医学上也叫做灵敏度,在本例中知所有真的垃圾短信被分类器正确找出来的比例,R=TP/(TP+FN)

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score  
predictions = clf.predict(x_test)  
print('准确率:', accuracy_score(y_test, predictions))  
print('精确率:', precision_score(y_test, predictions))  
print('召回率:', recall_score(y_test, predictions))  
print('F1-Score:', f1_score(y_test, predictions))  

from sklearn.metrics import classification_report, accuracy_score, confusion_matrix  
predictions = clf.predict(x_test)  
print('准确率:', accuracy_score(y_test, predictions))  
print('混淆矩阵:', confusion_matrix(y_test, predictions))  
print('分类报告:', classification_report(y_test, predictions))  

ROC AUC

ROC曲线(Receiver Operating Characteristic,ROC curve)可以用来可视化分类器的效果。和准确率不同,ROC曲线对分类比例不平衡的数据集不敏感,ROC曲线显示的是对超过限定阈值的所有预测结果的分类器效果。ROC曲线画的是分类器的召回率与误警率(fall-out)的曲线。误警率也称假阳性率,是所有阴性样本中分类器识别为阳性的样本所占比例:
F=FP/(TN+FP) AUC是ROC曲线下方的面积,它把ROC曲线变成一个值,表示分类器随机预测的效果.

from sklearn.metrics import roc_curve, auc  
predictions = clf.predict_proba(x_test)  
false_positive_rate, recall, thresholds = roc_curve(y_test, predictions[:, 1])  
roc_auc = auc(false_positive_rate, recall)  
plt.title('Receiver Operating Characteristic')  
plt.plot(false_positive_rate, recall, 'b', label='AUC = %0.2f' % roc_auc)  
plt.legend(loc='lower right')  
plt.plot([0, 1], [0, 1], 'r--')  
plt.xlim([0.0, 1.0])  
plt.ylim([0.0, 1.0])  
plt.ylabel('Recall')  
plt.xlabel('Fall-out')  
plt.show() 

模型原理

http://blog.csdn.net/sergeyca…
http://blog.csdn.net/zjuPeco/…

    原文作者:叶青婧
    原文地址: https://segmentfault.com/a/1190000013578856
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞