scikit-learn探索

1.KFold与StratifiedKFold的区别

class sklearn.model_selection.StratifiedKFold(n_splits=3, shuffle=False, random_state=None)
Stratified K-Folds cross-validator Provides train/test indices to split data in train/test sets.This cross-validation object is a variation of KFold that returns stratified folds. The folds are made by preserving the percentage of samples for each class

意思就是Stra~是按着不同类别标签的相对占比来进行的分折

看看代码

import numpy as np
import sklearn.datasets as ds
import sklearn.svm as sksvm
import sklearn.model_selection as skmodsel

a=[[i] for i in range(100)]
b=[0]*30;b.extend([1]*30);b.extend([2]*30);b.extend([3]*10)

K_strafold=skmodsel.StratifiedKFold(n_splits=10) 
K_folds=skmodsel.KFold(n_splits=10)
for train_indices, test_indices in K_folds.split(a):
    d={}
    for i in train_indices:
        d[b[i]]=d.setdefault(b[i],0)+1
    print(d)
    
print('------------------')    
for train_indices, test_indices in K_strafold.split(a,b):
    d={}
    for i in train_indices:
        d[b[i]]=d.setdefault(b[i],0)+1
    print(d)
    
d={}
for i in range(100):
    d[b[i]]=d.setdefault(b[i],0)+1   
print(d)

结果如下

{0: 20, 1: 30, 2: 30, 3: 10}
{0: 20, 1: 30, 2: 30, 3: 10}
{0: 20, 1: 30, 2: 30, 3: 10}
{0: 30, 1: 20, 2: 30, 3: 10}
{0: 30, 1: 20, 2: 30, 3: 10}
{0: 30, 1: 20, 2: 30, 3: 10}
{0: 30, 1: 30, 2: 20, 3: 10}
{0: 30, 1: 30, 2: 20, 3: 10}
{0: 30, 1: 30, 2: 20, 3: 10}
{0: 30, 1: 30, 2: 30}
------------------
{0: 27, 1: 27, 2: 27, 3: 9}
{0: 27, 1: 27, 2: 27, 3: 9}
{0: 27, 1: 27, 2: 27, 3: 9}
{0: 27, 1: 27, 2: 27, 3: 9}
{0: 27, 1: 27, 2: 27, 3: 9}
{0: 27, 1: 27, 2: 27, 3: 9}
{0: 27, 1: 27, 2: 27, 3: 9}
{0: 27, 1: 27, 2: 27, 3: 9}
{0: 27, 1: 27, 2: 27, 3: 9}
{0: 27, 1: 27, 2: 27, 3: 9}
------------------
{0: 30, 1: 30, 2: 30, 3: 10}

我们设置的是十折,也就是说将a分为十份,每次取一份来做test集
结果很明显,类别标签里有0,1,2各30个,和10个3标签,他们的占比就是3:3:3:1
当直接使用KFold的时候,则是每次取出十个同一列表标签的来做一折,看起来就好像是按着b的排列顺序,第一次取0~9做第一折,10-19做第二折,以此类推
但当使用Stra~的时候,每次取都是按着占比来取的,每一折都满足3:3:3:1,测试集也是满足这种

    原文作者:z_dominic
    原文地址: https://segmentfault.com/a/1190000011760014
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞