我试图使nls适合一个有点复杂的表达式,包括两个积分,其中两个拟合参数在其上限.
我收到了错误
“Error in nlsModel(formula, mf, start, wts) : singular gradient
matrix at initial parameter estimates”.
我已经在之前的答案中搜索过,但没有帮助.参数初始化似乎没问题,我试图改变参数但没有工作.如果我的函数只有一个积分,一切都很好,但是当添加第二个积分项时,就会得到错误.我不相信该功能是过度参数化的,因为我已经执行了更多参数的其他拟合并且它们起作用.下面我写了一些包含一些数据的列表.
最小的例子如下:
integrand <- function(X) {
return(X^4/(2*sinh(X/2))^2)
}
fitting = function(T1, T2, N, D, x){
int1 = integrate(integrand, lower=0, upper = T1)$value
int2 = integrate(integrand, lower=0, upper = T2)$value
return(N*(D/x)^2*(exp(D/x)/(1+exp(D/x))^2
)+(448.956*(x/T1)^3*int1)+(299.304*(x/T2)^3*int2))
}
fit = nls(y ~ fitting(T1, T2, N, D, x),
start=list(T1=400,T2=200,N=0.01,D=2))
——>作为参考,适用的适合如下:
integrand <- function(X) {
return(X^4/(2*sinh(X/2))^2)
}
fitting = function(T1, N, D, x){
int = integrate(integrand, lower=0, upper = T1)$value
return(N*(D/x)^2*(exp(D/x)/(1+exp(D/x))^2 )+(748.26)*(x/T1)^3*int)
}
fit = nls(y ~ fitting(T1 , N, D, x), start=list(T1=400,N=0.01,D=2))
——->数据说明问题:
dat<- read.table(text="x y
0.38813 0.0198
0.79465 0.02206
1.40744 0.01676
1.81532 0.01538
2.23105 0.01513
2.64864 0.01547
3.05933 0.01706
3.47302 0.01852
3.88791 0.02074
4.26301 0.0256
4.67607 0.03028
5.08172 0.03507
5.48327 0.04283
5.88947 0.05017
6.2988 0.05953
6.7022 0.07185
7.10933 0.08598
7.51924 0.0998
7.92674 0.12022
8.3354 0.1423
8.7384 0.16382
9.14656 0.19114
9.55062 0.22218
9.95591 0.25542", header=TRUE)
我无法弄清楚发生了什么.我需要对三个完整的组件执行此操作,但即使是两个我也有这个问题.我非常感谢你的帮助.谢谢.
最佳答案 您可以尝试其他一些优化器:
fitting1 <- function(par, x, y) {
sum((fitting(par[1], par[2], par[3], par[4], x) - y)^2)
}
library(optimx)
res <- optimx(c(400, 200, 0.01, 2),
fitting1,
x = DF$x, y = DF$y,
control = list(all.methods = TRUE))
print(res)
# p1 p2 p3 p4 value fevals gevals niter convcode kkt1 kkt2 xtimes
#BFGS 409.7992 288.6416 -0.7594461 39.00871 1.947484e-03 101 100 NA 1 NA NA 0.22
#CG 401.1281 210.9087 -0.9026459 20.80900 3.892929e-01 215 101 NA 1 NA NA 0.25
#Nelder-Mead 414.6402 446.5080 -1.1298606 -227.81280 2.064842e-03 89 NA NA 0 NA NA 0.02
#L-BFGS-B 412.4477 333.1338 -0.3650530 37.74779 1.581643e-03 34 34 NA 0 NA NA 0.06
#nlm 411.8639 333.4776 -0.3652356 37.74855 1.581644e-03 NA NA 45 0 NA NA 0.04
#nlminb 411.9678 333.4449 -0.3650271 37.74753 1.581643e-03 50 268 48 0 NA NA 0.07
#spg 422.0394 300.5336 -0.5776862 38.48655 1.693119e-03 1197 NA 619 0 NA NA 1.06
#ucminf 412.7390 332.9228 -0.3652029 37.74829 1.581644e-03 45 45 NA 0 NA NA 0.05
#Rcgmin NA NA NA NA 8.988466e+307 NA NA NA 9999 NA NA 0.00
#Rvmmin NA NA NA NA 8.988466e+307 NA NA NA 9999 NA NA 0.00
#newuoa 396.3071 345.1165 -0.3650286 37.74754 1.581643e-03 3877 NA NA 0 NA NA 1.02
#bobyqa 410.0392 334.7074 -0.3650289 37.74753 1.581643e-03 7866 NA NA 0 NA NA 2.07
#nmkb 569.0139 346.0856 282.6526588 -335.32320 2.064859e-03 75 NA NA 0 NA NA 0.01
#hjkb 400.0000 200.0000 0.0100000 2.00000 3.200269e+00 1 NA 0 9999 NA NA 0.01
Levenberg-Marquardt也会收敛,但是当nlsLM尝试从结果创建一个nls模型对象时会失败,因为渐变矩阵是单数的:
library(minpack.lm)
fit <- nlsLM(y ~ fitting(T1, T2, N, D, x),
start=list(T1=412,T2=333,N=-0.36,D=38), data = DF, trace = TRUE)
#It. 0, RSS = 0.00165827, Par. = 412 333 -0.36 38
#It. 1, RSS = 0.00158186, Par. = 417.352 329.978 -0.3652 37.746
#It. 2, RSS = 0.00158164, Par. = 416.397 330.694 -0.365025 37.7475
#It. 3, RSS = 0.00158164, Par. = 416.618 330.568 -0.365027 37.7475
#It. 4, RSS = 0.00158164, Par. = 416.618 330.568 -0.365027 37.7475
#Error in nlsModel(formula, mf, start, wts) :
# singular gradient matrix at initial parameter estimates