基于
“Test-Only Development” with the Z3 Theorem Prover,我试图在SMT-LIB中编码
Project Euler problem 4并使用Z3解决它.
问题是找到两个三位数字的最大回文整数乘积.解决方案是993 * 913 = 906609.
在下面的代码中,我只能编码两个三位数字应该是回文.这会产生正确但不是最大值604406.
如何更改代码以便找到最大值906609?
我尝试过使用(最大化(* p q)),但报告错误,说不支持目标函数'(* p q)’.我可以调整a的范围,但我正在寻找让Z3为我做这件事的方法.
到目前为止我所拥有的是:
(declare-const a Int)
(declare-const b Int)
(declare-const c Int)
(declare-const p Int)
(declare-const q Int)
(declare-const pq Int)
(define-fun satisfy ((pq Int)) Bool
(and
(<= 1 a 9)
(<= 0 b 9)
(<= 0 c 9)
(<= 100 p 999)
(<= p q 999)
(= pq
(* p q)
(+ (* 100001 a)
(* 10010 b)
(* 1100 c)))))
(assert (satisfy pq))
; Does not work:
;(maximize (* p q))
(check-sat)
(get-model)
使用z3 -smt2 e4.smt2 as-is运行它会产生:
sat
(model
(define-fun q () Int
913)
(define-fun p () Int
662)
(define-fun c () Int
4)
(define-fun b () Int
0)
(define-fun a () Int
6)
(define-fun pq () Int
604406)
)
最佳答案 一种可能的解决方案是
(declare-const a Int)
(declare-const b Int)
(declare-const c Int)
(declare-const p Int)
(declare-const q Int)
(declare-const pq Int)
(define-fun satisfy ((pq Int)) Bool
(and
(<= 1 a 9)
(<= 0 b 9)
(<= 0 c 9)
(<= 100 p 999)
(<= p q 999)
(= pq
(* p q)
(+ (* 100001 a)
(* 10010 b)
(* 1100 c)))))
(assert (satisfy pq))
(assert (> pq 888888))
(check-sat)
(get-model)
并且相应的输出是
sat
(model
(define-fun pq () Int 906609)
(define-fun q () Int 993)
(define-fun p () Int 913)
(define-fun c () Int 6)
(define-fun b () Int 0)
(define-fun a () Int 9) )
请在线运行此代码here.